
TotalView
Users Guide

April 2003

Version 6.2

Copyright © 1998–1999, 2003 by Etnus Inc. All rights reserved.
Copyright © 1999–2003 by Etnus LLC. All rights reserved.
Copyright © 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Etnus
LLC (Etnus).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Etnus has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in
this manual is subject to change without notice, and should not be construed as a commitment by Etnus. Etnus
assumes no responsibility for any errors that appear in this document.

TotalView and Etnus are registered trademarks of Etnus Inc.

All other brand names are the trademarks of their respective holders.

Book Overview
part I – Introduction

1 Discovering TotalView .. 3

2 Understanding Threads, Processes, and Groups................................... 17

part II – Setting Up

3 Setting Up a Debugging Session... 39

4 Setting Up Remote Debugging Sessions.. 73

5 Setting Up Parallel Debugging Sessions... 91

part III – Using the GUI

6 Using TotalView’s Windows .. 145

7 Visualizing Programs and Data ... 159

part IV – Using the CLI

8 Seeing the CLI at Work ... 185

9 Using the CLI.. 193

part V – Debugging

10 Debugging Programs.. 211

11 Using Groups, Processes, and Threads ... 239

12 Examining and Changing Data.. 277

13 Examining Arrays... 319

14 Setting Action Points .. 337

Glossary ... 385
Version 6.2 TotalView Users Guide iii

Book Overview
iv TotalView Users Guide Version 6.2

Contents
About This Book
How to Use This Book ...xvii
Using the CLI ..xviii
Audience ...xix
Conventions ..xx
Note ...xx
TotalView Documentation ..xxi
Contacting Us ..xxii

part I - Introduction

1 Discovering TotalView
First Steps ... 3

Starting TotalView ... 4
What About Print Statements? ... 5
Examining Data ... 6

Debugging Multiprocess and Multithreaded Programs 11
Supporting Multiprocess and Multithreaded Programs 12

Using Groups and Barriers .. 13
Introducing the CLI ... 14
What’s Next .. 15

2 Understanding Threads, Processes, and Groups
A Couple of Processes .. 17
Threads ... 20
Complicated Programming Models .. 21
Kinds of Threads ... 23
Organizing Chaos ... 25
Version 6.2 TotalView Users Guide v

Contents
Creating Groups ..29
Simplifying What You’re Debugging ..34

part II - Setting Up

3 Setting Up a Debugging Session
Compiling Programs ..40

File Extensions .. 41
Starting TotalView ...41

Initializing TotalView ...43
Exiting from TotalView ..46
Loading Executables ...46

Loading Remote Executables ...48
Attaching to Processes ...49

Attaching Using the Unattached Page ..50
Attaching Using File > New Program and dattach51

Detaching from Processes ..52
Examining Core Files ...53
Viewing Process and Thread State ..54

Attached Process States ...55
Unattached Process States ...56

Handling Signals ...56
Setting Search Paths ...59
Setting Command Arguments ...61
Setting Input and Output Files ...62
Setting Preferences ...64

Setting Preferences, Options, and X Resources69
Setting Environment Variables ...70
Monitoring TotalView Sessions ...71

4 Setting Up Remote Debugging Sessions
Starting the TotalView Debugger Server ...73

Setting Single-Process Server Launch Options74
Setting Bulk Launch Window Options ...76
Starting the Debugger Server Manually ..79
Using the Single-Process Server Launch Command80
Bulk Server Launch on an SGI MIPs Machine ...81
Bulk Server Launch on an IBM RS/6000 AIX Machine83
Bulk Server Launch on an HP Alpha Machine ...83
vi TotalView Users Guide Version 6.2

Contents
Disabling Autolaunch ... 84
Changing the Remote Shell Command ... 84
Changing the Arguments .. 85
Autolaunch Sequence .. 86

Debugging Over a Serial Line .. 86
Starting the TotalView Debugger Server ... 87
Starting TotalView on a Serial Line ... 88
Using the New Program Window ... 88

5 Setting Up Parallel Debugging Sessions
Debugging MPICH Applications ... 92

Starting TotalView on an MPICH Job .. 92
Attaching to an MPICH Job ... 94
MPICH P4 procgroup Files .. 96

Debugging HP Alpha MPI Applications .. 96
Starting TotalView on a HP Alpha MPI Job ... 96
Attaching to a HP Alpha MPI Job.. 97

Debugging HP MPI Applications ... 97
Starting TotalView on an HP MPI Job.. 97
Attaching to an HP MPI Job .. 98

Debugging IBM MPI (PE) Applications .. 99
Preparing to Debug a PE Application ... 99

Using Switch-Based Communication ... 99
Performing Remote Logins ... 100
Setting Timeouts .. 100

Starting TotalView on a PE Job ... 100
Setting Breakpoints .. 101
Starting Parallel Tasks ... 101
Attaching to a PE Job .. 102

Attaching from a Node Running poe .. 102
Attaching from a Node Not Running poe 102

Debugging QSW RMS Applications .. 103
Starting TotalView on an RMS Job .. 103
Attaching to an RMS Job .. 104

Debugging SGI MPI Applications .. 104
Starting TotalView on a SGI MPI Job... 104
Attaching to an SGI MPI Job ... 105

Debugging Sun MPI Applications ... 105
Attaching to a Sun MPI Job ... 106

Displaying the Message Queue Graph ... 107
Version 6.2 TotalView Users Guide vii

Contents
Displaying the Message Queue ...109
Message Queue Display Overview ..109
Using Message Operations ...110

Diving on MPI Processes ...111
Diving on MPI Buffers ...111
Pending Receive Operations ...111
Unexpected Messages ..112
Pending Send Operations ...112

MPI Debugging Troubleshooting ...113
Debugging OpenMP Applications ...113

Debugging OpenMP Programs ..114
TotalView OpenMP Features ...115
OpenMP Platform Differences ..115

OpenMP Private and Shared Variables ...117
OpenMP THREADPRIVATE Common Blocks ..118
OpenMP Stack Parent Token Line ..120

Debugging PVM and DPVM Applications ..121
Supporting Multiple Sessions ... 121
Setting Up ORNL PVM Debugging ...122
Starting an ORNL PVM Session ...122
Starting a DPVM Session ...123
Automatically Acquiring PVM/DPVM Processes124
Attaching to PVM/DPVM Tasks ...126

Reserved Message Tags .. 127
Cleanup of Processes ... 127

Debugging Shared Memory (SHMEM) Code ...128
Debugging UPC Programs ...129

Invoking TotalView ..130
Viewing Shared Objects ..130
Pointer to Shared ..132

Parallel Debugging Tips ...134
Attaching to Processes ... 134
General Parallel Debugging Tips ...137
MPICH Debugging Tips ...139
IBM PE Debugging Tips ...140
viii TotalView Users Guide Version 6.2

Contents
part III - Using the GUI

6 Using TotalView’s Windows
Using the Mouse Buttons ... 145
Using the Root Window .. 146
Using the Process Window ... 150
Diving into Objects ... 152
Resizing and Positioning Windows and Dialog Boxes 155
Editing Text ... 156
Saving the Contents of Windows ... 157

7 Visualizing Programs and Data
Displaying Your Program’s Call Tree ... 159
Displaying Memory Statistics ... 161
Using the Visualizer to Display Array Data ... 163

How the Visualizer Works.. 164
Configuring TotalView to Launch the Visualizer 165

Visualizer Launch Command .. 166
Data Types That TotalView Can Visualize 167
Viewing Data ... 167

Visualizing Data Manually ... 168
Visualizing Data Programmatically .. 169
Using the Visualizer ... 170

Directory Window ... 171
Data Windows ... 172

Using the Graph Window .. 173
Displaying Graphs .. 174
Manipulating Graphs .. 176

Using the Surface Window .. 177
Displaying Surface Data ... 177
Manipulating Surface Data ... 179

Launching the Visualizer from the Command Line 180

part IV - Using the CLI

8 Seeing the CLI at Work
Setting the EXECUTABLE_PATH State Variable 185
Initializing an Array Slice .. 187
Printing an Array Slice .. 187
Version 6.2 TotalView Users Guide ix

Contents
Writing an Array Variable to a File ...189
Automatically Setting Breakpoints ...189

9 Using the CLI
Tcl and the CLI ..193

The CLI and TotalView ...194
The CLI Interface ...195

Starting the CLI ...196
Startup Example ..197
Starting Your Program ...198

CLI Output ..200
“more” Processing ...201

Command Arguments ...201
Using Namespaces ..202
Command and Prompt Formats ...203
Built-In Aliases and Group Aliases ..203
Effects of Parallelism on TotalView and CLI Behavior204

Kinds of IDs ...205
Controlling Program Execution ...206

Advancing Program Execution .. 206
Action Points ...207

part V - Debugging

10 Debugging Programs
Searching and Looking Up Program Elements ...211

Searching for Text ...212
Looking for Functions and Variables ..212
Finding the Source Code for Functions ..213

Resolving Ambiguous Names ...214
Finding the Source Code for Files ...215
Resetting the Stack Frame ..216

Viewing the Assembler Version of Your Code ...216
Editing Source Text ...218
Manipulating Processes and Threads ...219

Using the Toolbar to Select a Target ..219
Stopping Processes and Threads ..220
Updating Process Information ..221
Holding and Releasing Processes and Threads221
x TotalView Users Guide Version 6.2

Contents
Examining Groups .. 223
Displaying Groups .. 224
Placing Processes into Groups ... 225
Starting Processes and Threads ... 225
Creating a Process Without Starting It .. 226
Creating a Process by Single-Stepping ... 227
Stepping and Setting Breakpoints .. 227

Using Stepping Commands .. 229
Stepping into Function Calls .. 230
Stepping Over Function Calls ... 230

Executing to a Selected Line .. 231
Executing to the Completion of a Function ... 232

Displaying Thread and Process Locations ... 232
Continuing with a Specific Signal ... 233
Deleting Programs .. 234
Restarting Programs ... 235
Checkpointing Programs and Processes .. 235
Setting the Program Counter .. 236
Interpreting Status and Control Registers .. 237

11 Using Groups, Processes, and Threads
Defining the GOI, POI, and TOI .. 239
Setting a Breakpoint ... 241
Stepping (Part I) .. 241

Group Width .. 242
Process Width ... 243
Thread Width ... 243
Using “Run To” and duntil Commands ... 244

Using P/T Set Controls .. 245
Setting Process and Thread Focus ... 247

Process/Thread Sets ... 248
Arenas ... 249
Specifying Processes and Threads ... 250

The Thread of Interest (TOI) ... 250
Process and Thread Widths .. 251

Specifier Examples ... 253
Setting Group Focus ... 253

Specifying Groups in P/T Sets ... 255
Arena Specifier Combinations .. 257
‘All’ Does Not Always Mean All ...259
Version 6.2 TotalView Users Guide xi

Contents
Setting Groups ..261
Using the ‘g’ Specifier: An Extended Example263
Focus Merging ...266
Incomplete Arena Specifiers ...267
Lists with Inconsistent Widths ..267

Stepping (Part II): Some Examples ..268
Using P/T Set Operators ..270
Using the P/T Set Browser ...271
Using the Group Editor ...275

12 Examining and Changing Data
Changing How Data Is Displayed ..277

Displaying STL Variables ...278
Changing Size and Precision ...280

Displaying Variables ..281
Displaying Program Variables ..282
Displaying Variables in the Current Block ...282
Browsing for Variables ...283
Displaying Local Variables and Registers ..284
Displaying Long Variable Names ...286
Automatic Dereferencing ..287
Displaying Areas of Memory ...289
Displaying Machine Instructions ...290
Closing Variable Windows ...290

Diving in Variable Windows ...291
Displaying Array of Structure Elements ..293

Scoping and Symbol Names ...294
Qualifying Symbol Names ...295

Changing the Values of Variables ..296
Changing the Data Type of Variables ..297

Displaying C Data Types ...298
Pointers to Arrays ..299
Arrays ..299
Typedefs ..300
Structures ..300
Unions ...301
Built-In Types ..302

Character Arrays (<string> Data Type) ...304
Areas of Memory (<void> Data Type) ...304
Instructions (<code> Data Type) ..304
xii TotalView Users Guide Version 6.2

Contents
Type Casting Examples ... 304
Displaying the argv Array.. 305
Displaying Declared Arrays... 306
Displaying Allocated Arrays.. 306

Working with Opaque Data ... 306
Changing the Address of Variables ... 306
Changing Types to Display Machine Instructions 307
Displaying C++ Types ... 307

Classes.. 307
Changing Class Types in C++ ... 309

Displaying Fortran Types .. 310
Displaying Fortran Common Blocks ... 310
Displaying Fortran Module Data ... 310
Debugging Fortran 90 Modules .. 312
Fortran 90 User-Defined Types ... 314
Fortran 90 Deferred Shape Array Types ... 314
Fortran 90 Pointer Types .. 315
Displaying Fortran Parameters ... 315

Displaying Thread Objects ... 317

13 Examining Arrays
Examining and Analyzing Arrays ... 319

Displaying Array Slices .. 319
Using Slices and Strides ... 320
Using Slices in the Lookup Variable Command 322

Array Data Filtering ... 324
Filtering Array Data .. 324
Filtering by Comparison ... 325
Filtering for IEEE Values ... 326
Filtering By a Range of Values .. 327
Creating Array Filter Expressions ... 329
Using Filter Comparisons ... 329

Sorting Array Data .. 330
Obtaining Array Statistics ... 331

Displaying a Variable in All Processes or Threads 333
Diving in a Laminated Pane .. 334
Editing a Laminated Variable .. 335

Visualizing Array Data ... 335
Visualizing a Laminated Variable Window ... 336
Version 6.2 TotalView Users Guide xiii

Contents
14 Setting Action Points
Action Points Overview ...337
Setting Breakpoints and Barriers ..339

Setting Source-Level Breakpoints ...340
Choosing Source Lines ...340

Setting and Deleting Breakpoints at Locations340
Displaying and Controlling Action Points ...343

Disabling ... 343
Deleting .. 344
Enabling.. 344
Suppressing .. 344

Setting Machine-Level Breakpoints ..345
Setting Breakpoints for Multiple Processes ..346
Setting Breakpoints When Using fork()/execve()347

Processes That Call fork() ... 348
Processes That Call execve()... 348
Example: Multiprocess Breakpoint ...349

Barrier Points ...350
Barrier Breakpoint States ..350
Setting a Barrier Breakpoint ..351
Creating a Satisfaction Set ...353
Hitting a Barrier Point ...353
Releasing Processes from Barrier Points ..353
Deleting a Barrier Point ...353
Changes When Setting and Disabling a Barrier Point354

Defining Evaluation Points and Conditional Breakpoints354
Setting Evaluation Points ..356
Creating Conditional Breakpoint Examples ..356
Patching Programs ..357

Conditionally Patching Out Code ...357
Patching in a Function Call ... 358
Correcting Code.. 358

Interpreted vs. Compiled Expressions ..358
Interpreted Expressions ...359
Compiled Expressions ..359

Allocating Patch Space for Compiled Expressions360
Dynamic Patch Space Allocation ..360
Static Patch Space Allocation ..361

Using Watchpoints ..363
Architectures ...363
xiv TotalView Users Guide Version 6.2

Contents
Creating Watchpoints ... 365
Displaying Watchpoints .. 366

Watching Memory ... 366
Triggering Watchpoints ... 367

Using Multiple Watchpoints ... 367
Data Copies .. 368

Using Conditional Watchpoints .. 368
Saving Action Points to a File ... 370
Evaluating Expressions ... 371
Writing Code Fragments ... 373

TotalView Variables ... 374
Built-In Statements ... 375
C Constructs Supported ... 377

Data Types and Declarations ... 377
Statements ... 378

Fortran Constructs Supported ... 378
Data Types and Declarations ... 379
Statements ... 379

Writing Assembler Code ... 380

Glossary .. 385

Index... 401
Version 6.2 TotalView Users Guide xv

Contents
xvi TotalView Users Guide Version 6.2

About This Book
This book describes how to use TotalView®, a source- and machine-level debugger for
multiprocess, multithreaded programs. The guide assumes that you are familiar with
programming languages, the UNIX operating systems, the X Window System, and the
processor architecture of the platform on which you are running TotalView.

You will be reading a user guide that combines information for two TotalView debug-
gers. One uses Motif to present windows and dialog boxes. The other runs in an xterm-
like window and requires that you type commands. This book emphasizes the Motif
interface, as it is easier to use. In addition, once you “see” what you can do, you will
know what can be done using the command interface.

This book covers using TotalView on any platform.

How to Use This Book

The information in this book is presented in 5 parts.

g I: Introduction

Here you’ll find an overview of some of TotalView’s features and an introduction
to TotalView’s process/thread model. Please read this information. It’s easy read-
ing and you’ll get a feel for what TotalView can do.

g II: Setting Up

Most people don’t spend a lot of time in this section. Chapter 3 tells you what
you need to know about configuring TotalView. Chapters 4 and 5 tell you how to
get your programs running under TotalView’s control. Look at Chapter 4 if you’re
having problems getting the TotalView Debugger Server (tvdsvr) running and if
you’re reconfiguring how tvdsvr gets launched.

You will never need to read all of Chapter 5. Instead, go to the table of contents
and find the section that has the information you need.
Version 6.2 TotalView Users Guide xvii

About This Book
g III: Using the GUI
The chapters in this section look at some of TotalView’s windows and how you
use them. You are also shown tools such as the Visualizer and the Call Tree that
help you analyze what your program is doing.

g IV: Using the CLI
The chapters in this section explain the conventions of using a command-line
debugger and how to create Tcl macros.

g V: Debugging

In many ways, most of what has preceded this part of the book is “introductory”
material. Here is where you’ll find out how to examine your program and its data.
In this part, you’ll find information on setting the action points that allow you to
stop and monitor your program’s execution.

Equally important, Chapter 11 is a detailed examination of TotalView’s group,
process, and thread model. The more you understand this model, the easier time
you’ll have debugging multiprocess and multithreaded programs.

Using the CLI

To use the CLI (Command Line Interface), you need to be familiar with and have ex-
perience debugging programs with the TotalView GUI. As CLI commands are em-
bedded within a Tcl interpreter, you will get better results if you are familiar with Tcl.
However, if you don’t know Tcl, you will still be able to use the CLI, but you will lose
the programmability features that Tcl gives. For example, CLI commands operate
upon a set of processes and threads. You can save this set and apply it to com-
mands based upon what you have saved.

You can obtain information on using Tcl at many bookstores, and you can also or-
der these books from online bookstores. Two excellent books are

g Ousterhout, John K. Tcl and the Tk Toolkit. Reading, Mass.: Addison Wesley, 1997.

g Welch, Brent B. Practical Programming in Tcl & Tk. Upper Saddle River, N.J.: Prentice
Hall PTR, 1997.

There is also a rich supply of resources available on the Web. The best starting
point is www.tcltk.com.
xviii TotalView Users Guide Version 6.2

About This Book
The fastest way to gain an appreciation of the actions performed by CLI commands
is to review Chapter 1 of the TOTALVIEW REFERENCE GUIDE, which contains an over-
view of CLI commands.

Audience

Many of you are very sophisticated programmers, having a tremendous knowledge
of programming and its methodologies and almost all of you have used other
debuggers and have developed your own techniques for debugging the programs
that you write.

We know you are expert in your areas, whether it be threading, high-performance
computing, client/server interactions, and the like. So, this book won’t try to tell
you about what you’re doing. Instead, it tells you about TotalView.

As you will see, TotalView is a rather easy-to-use product. We can’t tell you how to
use TotalView to solve your problems because your programs are unique and com-
plex, and we can’t anticipate what you want to do. We also know you don’t want to
spend a lot of time reading about using TotalView. Consequently, you’re not going
to see a lot of quasi-procedural discussions that tell you what to put in dialog
boxes. You already know what to do.

This book also doesn’t spend a lot of time explaining what you do with a dialog box
or the kinds of data you can type. If you want that information, you’ll find it in the
online Help. If you prefer, an HTML version of this information is available on our
Web site. If you have purchased TotalView, you can also post this HTML documen-
tation on your intranet.
Version 6.2 TotalView Users Guide xix

About This Book
Conventions

The following table describes the conventions used in this book:

Note

This book discusses the TotalView GUI and the CLI simultaneously. You will see
where something is done in the GUI and what the CLI equivalent is. But in many
cases, we assume that you know which to use, and can fill in the details. For exam-
ple, when a dialog box is discussed, this book does not mention that using the dia-

TABLE I: Book Conventions

Convention Meaning
[] Brackets are used when describing parts of a command that

are optional.

arguments In a command description, text in italic represent
information you type. Elsewhere, italic is used for emphasis.
You won’t have any problems distinguishing between the
uses.

Dark text In a command description, dark text represent keywords or
options that you must type exactly as displayed. Elsewhere,
it represents words that are used in a programmatic way
rather than their normal way.

Example text In program listings, this indicates that you are seeing a
program or something you’d type in response to a shell or
CLI prompt. If this text is in bold, it’s indicating that what
you’re seeing is what you’ll be typing. Bolding this kind of
text is done only when it’s important. You’ll usually be able
to differentiate what you type from what the system prints.

This graphic symbol indicates that a feature is only available
in the GUI. If you see it on the first line of a section, all the
information in the section is just for GUI users. When it is
next to a paragraph, it tells you that just the sentence or
two being discussed applies to the GUI.

The primary emphasis of this book is on the GUI. It shows
the windows and dialog boxes that you use. This symbol
tells you how to do the same thing using the CLI.

CLI EQUIVALENT:
xx TotalView Users Guide Version 6.2

About This Book
log box is something you do when using the GUI. In most cases, reading what the
GUI does tells you what you need to know when using the CLI.

This book minimizes the amount of stuff you have to read since we assume you just
want to use TotalView so that you can get the bugs out of your program.

TotalView Documentation

The following table describes other TotalView documentation:

TABLE II: TotalView Documentation

Title Contents
Online
Help HTML PDF Print

TotalView Reference
Guide

Contains descriptions of CLI
commands, how you run TotalView,
and platform-specific information

✔ ✔ ✔

TotalView QuickView Presents what you need to know to
get started using TotalView

✔

TotalView Commands Defines all TotalView GUI
commands

✔ ✔ ✔

Creating Type
Transformations

Tells how to create Tcl CLI macros
that change the way structures and
STL containers appeaer

✔ ✔

TotalView Installation
Guide

Contains the procedures to install
TotalView and the FLEXlmlicense
manager

✔ ✔ ✔

TotalView New Features Tells you about new features added
to TotalView

✔ ✔ ✔

TotalView Release Notes Lists known bugs and other
information related to the current
release

✔ ✔ ✔

IBM Considerations Briefly describes things you should
know when run on IBM RS6000
machines

✔ ✔ ✔

Linux Considerations Briefly describes things you should
know when running on Linux
platforms

✔ ✔ ✔
Version 6.2 TotalView Users Guide xxi

About This Book
Contacting Us

Please contact us if you have problems installing TotalView, questions that are not
answered in the product documentation or on our Web site, or suggestions for new
features or improvements.

Our Internet E-Mail address for support issues is support@etnus.com
For documentation issues, the address is: documentation@etnus.com
Call: 1-800-856-3766 in the United States
(+1) 508-652-7700 worldwide

If you are reporting a problem, please include the following information:

g The version of TotalView and the platform on which you are running TotalView

g An example that illustrates the problem

g A record of the sequence of events that led to the problem

The TOTALVIEW RELEASE NOTES contains complete instructions on how to report
problems.

Patching Platforms Describes how to apply vendor
supplied patches to operating
systems and compilers

✔ ✔ ✔

Platforms and System
Requirements

Lists the platforms upon which
TotalView runs and the compilers it
supports

✔ ✔ ✔

TABLE II: TotalView Documentation (cont.)

Title Contents
Online
Help HTML PDF Print
xxii TotalView Users Guide Version 6.2

Part I: Introduction
This part of the TOTALVIEW USERS GUIDE contains two chapters.

Chapter 1: Discovering TotalView
Presents an overview of what TotalView is and the ways in which it
can help you debug programs. If you haven’t used TotalView before,
reading this chapter gives you a high-level understanding of what
TotalView can do for you.

Chapter 2: Understanding Threads, Processes, and Groups
Defines TotalView’s model for organizing processes and threads.
While most programmers have an intuitive understanding of what
their programs are doing, debugging multiprocess and multithreaded
programs requires an exact knowledge of what’s being done. This
chapter begins a two-part look at TotalView’s process/thread model.
This chapter contains introductory information. Chapter 11: “Using
Groups, Processes, and Threads” on page 239 contains information
on using this model with TotalView commands.
Version 6.2 TotalView Users Guide 1

2 TotalView Users Guide Version 6.2

Version 6.2
Chapter 1
Discovering TotalView
The Etnus TotalView® debugger is a powerful, sophisticated, and programmable tool
that allows you to debug, analyze, and tune the performance of complex serial, multi-
processor, and multithreaded programs.

If you want to jump in and get started quickly, you should go to our Website at
www.etnus.com and go to TotalView’s “Getting Started” area.

Topics in this chapter are:

g “First Steps” on page 3
g “Debugging Multiprocess and Multithreaded Programs” on page 11
g “Using Groups and Barriers” on page 13
g “Introducing the CLI” on page 14
g “What’s Next” on page 15

First Steps

Getting started with TotalView is similar to getting started using other debuggers:

g You use the –g option when compiling your program.

g You start your program under the debugger’s control.

g You set breakpoints.

g You examine data.

And, the way you go about doing these things is just about the same. Where
TotalView differs from what you’re used to using is in its raw power, the breadth of
commands available, and its native ability to handle multiprocess, multithreaded
programs.
TotalView Users Guide 3

1
Discovering TotalView

First Steps
Starting TotalView

After execution begins—you’ll probably have typed something like totalview
programname—you’ll see a five-paned window. (See Figure 1.)

You can get going in several ways. Perhaps the easiest is to click on Step in the tool-
bar. This gets your program started, which means all the initialization stuff per-
formed by the program gets done but no statements are executed. Alternatively,
you could scroll your program to find where you want it to run to, select the line,

FIGURE 1: The Process Window
4 TotalView Users Guide Version 6.2

Discovering TotalView

First Steps
then click on Run To in the toolbar. Or you could click on the line number, which
tells TotalView to create a breakpoint on that line, and then click Go in the toolbar.

If your program is large, and usually it will be, you can use the Edit > Find com-
mand to locate the line for you. Or, if you want to stop execution when your pro-
gram reaches a subroutine, use the Action Point > At Location command to set a
breakpoint before clicking on Go.

As you can see, you’ve got lots of choices. Unlike other debuggers, TotalView gives
you choices that allow you to debug your program however you want to debug it.

What About Print Statements?

Most programmers learned to debug by using print statements. That is, you load
your program with printf() or PRINT statements and then inspect what gets written.
There’s a problem with this. Every time you want to add a new statement, you’ve
got to recompile your program. What’s worse is that in a multiprocess, multi-
threaded program, what you want printed may not print in the right order. While
TotalView is much more sophisticated than this about showing your data (as you’ll
soon see), you can even use print statements simply.

In TotalView, breakpoints are called “action points”. This is because they can be
much more powerful than what you’re used to. So, if you don’t want to change the
way you’ve been debugging, you can add your breakpoints easily. Figure 2 on
page 6 shows the Action Point Properties Dialog Box. The easiest way to display
this dialog box is to right-click on a line and then select Properties in the context
menu. This menu is shown in Figure 1.

After clicking on the Evaluate radio button, you can add any code you want to a
breakpoint. Because there’s code associated with this breakpoint, it is now called
an “eval point.” Here’s where TotalView does things a little differently. When the eval
point is reached, TotalView executes the code, which prints the value of i. Eval
points do exactly what you tell them to do. In this case, because you didn’t tell
TotalView to stop executing, it keeps on going. In other words, you don’t have to
stop program execution just to see data. You can, of course, tell TotalView to stop.
Figure 3 on page 7 shows two evaluation points that stop execution. (One of them
does something else as well.)
Version 6.2 TotalView Users Guide 5

1
Discovering TotalView

First Steps
The one in the foreground uses a programming language statements and a built-in
TotalView function to stop a loop every 100 iterations. It also prints what the value
of i is. The one in the background just stops the program every 100 times a state-
ment gets executed.

Evaluation points even allow you to patch your programs and route around code
that you want replaced. The evaluation point shown in Figure 4 on page 8 tells
TotalView to execute three statements and then skip to line 658.

Examining Data

Programmers use print statements as an easy way to examine data. They usually do
this because the debugger doesn’t have sophisticated ways of showing your data.
In contrast, Chapter 12, “Examining and Changing Data,” on page 277 and Chapter
13, “Examining Arrays,” on page 319 explain how you can display data values with
TotalView. In addition, Chapter 7, “Visualizing Programs and Data,” on page 159 de-
scribes how to visualize your data in a graphical way.

Because data is difficult to see, the Stack Frame Pane (the pane in the upper right
corner of the Process Window, which is show in Figure 1 on page 4) has a list of all

FIGURE 2: Action Point Properties Dialog Box
6 TotalView Users Guide Version 6.2

Discovering TotalView

First Steps
variables that exist in your current routine. If the value is simple, you can see it in
this pane.

If it isn’t, just dive on the variable to get more information.

NOTE “Diving” is something you can do almost everywhere in TotalView. What happens
depends on where you are. To dive on something, position the cursor on the item and click
your middle mouse button. If you have a two-button mouse, you can double-click your left
mouse button.

Diving on a variable tells TotalView to display a window containing information
about the variable. (As you read this manual, you’ll come across many other kinds
of diving.)

Notice that some of the values in the Stack Frame Pane are in bold type. This lets
you know that you can click on the value and then edit it.

FIGURE 3: More Conditions
Version 6.2 TotalView Users Guide 7

1
Discovering TotalView

First Steps
Figure 5 on page 9 shows two Variable Windows. One was created by diving on a
structure and the other by diving on an array. Because the data displayed in a Vari-
able Window may not be simple, you can also dive on data in the Variable Window.
Normally, this information is displayed in the same window. However, you can use
the View > Dive Anew command to display this information in a separate window.

If the data being displayed is a pointer, diving on the variable chases the pointer
and then displays the data that is being pointed to. In this way, you can follow
linked lists. Notice the forward- and backward-facing arrows in the upper right cor-
ner of the Variable Windows. Selecting them lets you “undive” and “redive.” For
example, if you’re following a pointer chain, clicking the left-pointing arrow takes
you back to where you just were. Clicking the right-pointing arrow takes you “for-
ward” to the place you previously dove on.

Many arrays have copious amounts of data. Consequently, TotalView has a variety
of ways to simplify how it should display this data.

The window in the background of Figure 6 on page 9 shows a basic slice operation.
This operation tells TotalView that it should only display array elements whose posi-
tions are named by the slice. The foreground window combines a filter with a slice.

FIGURE 4: Patching Using an Evaluation Point
8 TotalView Users Guide Version 6.2

Discovering TotalView

First Steps
FIGURE 5: Two Variable Windows

FIGURE 6: Two More Variable Windows
Version 6.2 TotalView Users Guide 9

1
Discovering TotalView

First Steps
In this case, the filter says “of the array elements that could be displayed, only dis-
play the elements whose value is greater than 300.”

While slicing and filtering let you reduce the amount of data that TotalView will dis-
play, there are many times when you want to see the shape of the data. If you select
the Tools > Visualize command, TotalView shows a graphic representation of the
information in the Variable Window. Here’s an example:

There’s yet another way to look at data. TotalView’s watchpoints let you see when a
variable’s data changes. This works in a different way than other action points. A
watchpoint stops execution whenever a data value changes no matter what instruc-
tion changed the data. That is, if you change data from 30 different statements, the
watchpoint stops execution whenever any of the 30 make a change. In contrast,
other action points do something right before a line in your source executes. To
create a watchpoint, select the Tools > Watchpoint command from any Variable
Window.

FIGURE 7: Array Visualization
10 TotalView Users Guide Version 6.2

Discovering TotalView

Debugging Multiprocess and Multithreaded Programs
Debugging Multiprocess and Multithreaded Programs

When your program creates processes and threads, TotalView can automatically
bring them under its control. If the processes are already running, they too can be
acquired. You don’t need to have multiple debuggers running. TotalView is enough.

The processes that your program creates can be local or remote. Both are pre-
sented to you in the same way. The only difference between debugging a single-pro-
cess program and a multiprocess, multithreaded program is that you gain the ability
to display these additional threads and processes in Process Windows. You can dis-
play them in the current Process Window or display them in another window. As al-
ways, there are several ways to do it.

TotalView’s Root Window (see Figure 8), which is automatically displayed after you
start TotalView, contains an overview of everything being debugged, so diving on a
process or a thread listed in the Root Window takes you quickly to the information
you want to see. If you need to debug processes that are already running, the
Unattached Page lets you dive on other processes you own. After diving on them,
they can also be debugged.

In the Process Window, you can switch between processes and threads by clicking
the process and thread switching buttons in the toolbar. These are the buttons on
the right side of the toolbar in Figure 9.

FIGURE 8: The Root Window
Version 6.2 TotalView Users Guide 11

1
Discovering TotalView

Debugging Multiprocess and Multithreaded Programs
Every time you click on one of these buttons, TotalView switches. The switching or-
der is the order in which you see things in the Root Window.

In many cases, you’ll be using one of the popular parallel execution models.
TotalView supports MPI and MPICH, OpenMP, ORNL PVM (and HP Alpha DPVM), SGI
shared memory (shmem) and UPC. You could be using threading in your programs.
Or your programs can be compiled using products provided by your hardware ven-
dor or third-party programs such as those from KAI and the Free Software Founda-
tion (the GNU compilers).

Supporting Multiprocess and Multithreaded Programs

TotalView’s laminated data view lets you see data values across threads or across
processes. Here’s an example of what you’ll see after you use the Variable Win-
dow’s View > Laminate command:

When debugging MPI programs, using the Tools > Message Queue Graph to dis-
play the message queues graphically is the quickest way to see what is going on.
(See Figure 11 on page 13.)

FIGURE 9: Process and Thread Switching Icons

FIGURE 10: A Laminated Variable Window
12 TotalView Users Guide Version 6.2

Discovering TotalView

Using Groups and Barriers
Clicking on the boxed numbers tells TotalView to place the associated process into
a Process Window. Clicking on a number next to the arrow tells TotalView to display
more information about that message queue.

As you go through this book, you’ll find many more examples.

Using Groups and Barriers

When running a multiprocess and multithreaded program, TotalView tries to auto-
matically place your executing processes into different groups. While you can al-
ways individually stop, start, step, and examine any thread or process, TotalView
lets you perform these actions on groups of threads and processes. In most cases,
you’ll be doing the same kinds of operations on the same kinds of things. The two
pulldown menus on the toolbar let you indicate what the target of your action will
be. See Figure 12 on page 14.

FIGURE 11: A Message Queue Graph
Version 6.2 TotalView Users Guide 13

1
Discovering TotalView

Introducing the CLI
For example, if you are debugging an MPI program, you’d probably set the pulldown
to Process Workers. The reasons for setting them like this are in Chapter 11. The
definition of what these groups actually are is in Chapter 2. The Groups Page of the
Root Window (Figure 13) shows you the processes and threads that are in a group.

Introducing the CLI

TotalView is programmable. The CLI, the TotalView Command Line Interface, con-
tains an extensive set of commands that you can type into a command window.
These commands are embedded in a version of the Tcl command interpreter. When
you open a CLI window, you can enter any Tcl statements that you could enter in
any version of Tcl. You can also enter commands that have been added that allow
you to debug your program. Because these debugging commands are native to

FIGURE 12: Toolbar with Pulldown

FIGURE 13: The Root Window’s Group Page
14 TotalView Users Guide Version 6.2

Discovering TotalView

What’s Next
TotalView’s Tcl, you can also use Tcl to manipulate the program being debugged.
This means that you can use the CLI to create your own commands or perform any
kind of repetitive operation. For example, the dbreak 1038 command sets a break-
point at line 1038. Here’s an example that uses a debugging command and a Tcl
command to set breakpoints at three lines:

foreach i {1038 1043 1045} {
dbreak $i

}

You’ll find information about the CLI scattered throughout this book. CLI Com-
mands are described in Chapter 2 of the TOTALVIEW REFERENCE GUIDE.

What’s Next

This chapter has presented just a few of TotalView’s highlights. The rest of this book
tells you more about all of TotalView features, both the ones mentioned here and
those not yet discussed.

All TotalView documentation is available on our Web site at
http://www.etnus.com/Support/docs in PDF and HTML formats. In addition, this
information is also contained within TotalView’s online Help.
Version 6.2 TotalView Users Guide 15

1
Discovering TotalView

What’s Next
16 TotalView Users Guide Version 6.2

Version 6.2
Chapter 2
Understanding
Threads, Processes, and Groups
While the specifics of how multiprocess, multithreaded programs execute differ greatly from one
hardware platform to another, from one operating system to another, and from one compiler to
another, all share some general characteristics. This chapter defines how TotalView looks at pro-
cesses and threads.

This chapter is presents the concepts of thread, process, and group. Chapter 11, “Using Groups,
Processes, and Threads” on page 239 is a more exacting and comprehensive look at these topics.

Topics in this chapter are:

g “A Couple of Processes” on page 17
g “Threads” on page 20
g “Complicated Programming Models” on page 21
g “Kinds of Threads” on page 23
g “Organizing Chaos” on page 25
g “Creating Groups” on page 29
g “Simplifying What You’re Debugging” on page 34

A Couple of Processes

When programmers write single-threaded, single-process programs, they can almost always
answer the question “Do you know where your program is?” These kind of programs are
rather simple, looking something like what’s shown in Figure 14 on page 18.

If you use any debugger on these kinds of programs, you can almost always figure out
what’s going on. Before the program begins executing, you set a breakpoint, let the program
run until it hits the breakpoint, and then inspect variables to see their values. If you suspect
there’s a logic problem, you can step the program through its statements, seeing what hap-
pens and where things are going wrong.
TotalView Users Guide 17

2
Understanding Threads, Processes, and Groups

A Couple of Processes
What is actually occurring, however, is a lot more complicated since a number of programs
are always executing on your computer. For example, your computing environment could
have daemons and other support programs executing, and your program can interact with
them. (See Figure 15.)

These additional processes can simplify your life because your program no longer has to do
everything itself. It can hand off some tasks and not have to focus on how the work will get
done.

Figure 15 assumes that the application program just sends requests to a daemon. This ar-
chitecture is very simple. More typical is the kind of architecture shown in Figure 16 on
page 19. Here, an E-mail program is communicating with a daemon on one computer. After
receiving a request, this daemon sends data to an E-mail daemon on another computer,
which then delivers the data to another mail program.

This architecture assumes that the jobs are disconnected and that they do not need to co-
operate. This model has one program handing off work to another. After the handoff, the
programs do not interact. While this is a useful model for many kinds of computation, a
more general model allows a program to divide its work into smaller jobs, and parcel them
out to other computers. This model relies on programs on other machines to do some of
the first program’s work. To gain any advantage, however, the work a program parcels out

FIGURE 14: A Uniprocessor

FIGURE 15: A Program and Daemons

A Computer

A Process

A Daemon or
Support Program

A User Program
18 TotalView Users Guide Version 6.2

Understanding Threads, Processes, and Groups

A Couple of Processes
must be work that it doesn’t need right away. In this model, the two computers act more or
less independently. And, because the first computer doesn’t have to do all the work, the
program can complete its work faster. (See Figure 17.)

Using more than one computer doesn’t mean that less computer time is being used. Over-
head due to sending data across the network and overhead for coordinating multiprocess-
ing always means more work is being done. It does mean, however, that your program
finishes sooner than if only one computer were working on the problem.

Here is one of the problems with this model: how does a programmer debug what’s hap-
pening on the second computer? One solution is to have a debugger running on each com-
puter. The TotalView solution to this debugging problem is better. It places a server on all
remote processor as they are launched. These servers then communicate with the “main”
TotalView. This debugging architecture gives you one central location from which you can
manage and examine all aspects of your program.

NOTE You can also have TotalView attach to programs that are already running on other computers.

In all cases, it is far easier to write your program so that it only uses one computer at first.
After you’ve got it working, you can split it up so it uses other computers. It is likely that any

FIGURE 16: Mail Using Daemons

FIGURE 17: Two Computers Working on One Problem

Sends Work

Receives Results

Uses Results
Version 6.2 TotalView Users Guide 19

2
Understanding Threads, Processes, and Groups

Threads
problems you find will occur in the code that splits up the program or in the way the pro-
grams manipulate shared data, or in some other area related to the use of more than one
thread or process. This assumes, of course, that it is practical to write your program as a
single-process program. For some algorithms, executing a program one machine means
that it will take weeks to execute.

Threads

The daemon programs discussed in the previous section are owned by the operating sys-
tem. They perform a variety of activities from managing computer resources to providing
standard services such as printing.

If operating systems can have many independently executing components, why can’t a pro-
gram? Obviously, it can and there are various ways to do this. One programming model
splits the work off into somewhat independent tasks within the same process. This is the
threads model. (See Figure 18.) This figure also shows, for the last time, the daemon pro-
cesses that are executing. From now on, just assume that they are there.

In this computing model, a program (the main thread) creates threads. If they need to, these
newly created threads can also create threads. Each thread executes relatively indepen-
dently from other threads. You can, of course, program them to share data and to synchro-
nize how they execute.

FIGURE 18: Threads

A thread

A daemon
20 TotalView Users Guide Version 6.2

Understanding Threads, Processes, and Groups

Complicated Programming Models
The debugging problem here is similar to the problem of processes running on different ma-
chines. In both, a debugger must intervene with more than one executing entity.

NOTE There’s not a lot of difference between a multithreaded or a multiprocess programs when you
are using TotalView. Except for operating system support, the way in which TotalView displays process
information is very similar to how it displays thread information.

Complicated Programming Models

While most computers being sold today have one processor, high-performance computing
uses computers that have more than one processor. And as hardware prices decrease, this
model is starting to become more widespread. Having more than one processor means that
the threads model shown in Figure 18 changes to look something like what’s shown in
Figure 19.

This figure shows four linked processors in one computer, each of which has three threads.
This architecture is an extension to the model that links more than one computer together.
It’s advantage is that the processor doesn’t need to communicate with other processors
over a network as it is completely self-contained.

FIGURE 19: Four Processor Computer
Version 6.2 TotalView Users Guide 21

2
Understanding Threads, Processes, and Groups

Complicated Programming Models
The next step, of course, is to join many multiprocessor computers together. Figure 20
shows five computers, each having four processors with each processsor running three
threads. If this figure is showing the execution of one program, then the program is using 60
threads.

This figure depicts only processors and threads. It doesn’t have any information about the
nature of the programs and threads or even if the programs are copies of one another or
represent different executables.

At any time, it is next to impossible to guess which threads are executing and what a thread
is actually doing. To make matters worse, many multiprocessor programs begin by invoking
a process such as mpirun or IBM’s poe whose function is to distribute and control the work
being performed. In this kind of environment, a program (or the program in a library) is using
another program to control the workflow across processors.

When there are problems in this scenario—and there are always problems—traditional de-
buggers and solutions are helpless. As you will see, TotalView, on the other hand, organizes
this mass of executing procedures for you and lets you distinguish between threads and
processes that the operating system uses from those that your program uses.

FIGURE 20: Four-Processor Computer Networks
22 TotalView Users Guide Version 6.2

Understanding Threads, Processes, and Groups

Kinds of Threads
Kinds of Threads

All threads aren’t the same. Figure 21 shows a program with three threads.

For the moment, assume that all of these threads are user threads; that is, they are threads
that perform some activity that you’ve programmed.

NOTE Many computer architectures have something called “user mode”, “user space,” or something
similar. “User threads” means something else. Without trying to be rigorous, the TotalView definition
of a “user thread” is simply a unit of execution created by a program.

Because they are created by your program to do the work of your program, they are called
worker threads.

Other threads can also be executing within the process. For example, the threads that are
part of the operating environment are manager threads. A manager thread is a thread that
your environment or operating system adds to your program to help it get work done. In
Figure 22 on page 24, the horizontal threads at the bottom are user-created manager
threads.

Things would be nice and easy if this was all there was to it. Unfortunately, all threads are
not created equal and all threads do not execute equally. In most cases, a program also cre-
ates manager-like threads. As these user-created manager threads are designed to perform
services for other threads, they can also be called service threads. (See Figure 23 on page 24.)

FIGURE 21: Threads

A thread
Version 6.2 TotalView Users Guide 23

2
Understanding Threads, Processes, and Groups

Kinds of Threads
These service threads are, of course, also worker threads. They are called different things
just to keep the different kinds of things that they do separate. As an example, this could be

FIGURE 22: User Threads and Service Threads

FIGURE 23: User, Service, and Manager Threads

User Thread

Manager Thread

User Threads

User Service Thread

Manager Thread
24 TotalView Users Guide Version 6.2

Understanding Threads, Processes, and Groups

Organizing Chaos
a thread whose sole function is to send data to a printer in response to a request from the
other two threads.

One reason you need to know which of your threads are service threads is that a service
thread performs different kinds of activities from your other threads. Because their activities
are different, they are usually developed separately and, in many cases, are not involved
with the fundamental problems being solved by the program. The code that sends mes-
sages between processes is far different than the code that performs fast Fourier trans-
forms. For example, a service thread that queues and dispatches messages sent from other
threads may have bugs, but the bugs are different than the rest of your code and you can
deal with them separately from the bugs that occur in non-service user threads.

In contrast, your user threads are the agents performing the program’s work, and their inter-
actions are where the action is. Being able to distinguish between the two kinds of threads
means that you can focus on the threads and processes that are actively participating in an
activity, rather than on threads in the background performing subordinate activities.

So, while this figure shows five threads, most of your debugging effort will focus on just two
threads.

Organizing Chaos

While it is possible to debug programs that are running thousands of processes and threads
across hundreds of computers by individually looking at each, this is clearly impractical. The
only workable approach is to organize your processes and threads into groups and then de-
bug your program by using these groups. In other words, in a multiprocess, multithreaded
program, you are most often not programming each process or thread individually. Instead,
most high-performance computing programs perform the same or similar activities on dif-
ferent sets of data.

While TotalView cannot know your program’s architecture, it can make some intelligent
guesses based on what your program is executing and where the program counter is. Using
this information, TotalView automatically organizes your processes and threads into the fol-
lowing predefined “groups”:

g Control Group: All the processes that a program creates. These processes can be local
or remote. If your program uses processes that it did not create, TotalView places them in
separate control groups. For example, a client/server program has two distinct executa-
Version 6.2 TotalView Users Guide 25

2
Understanding Threads, Processes, and Groups

Organizing Chaos
bles that run independently of one another. Each would be in a separate control group. In
contrast, processes created by fork() are in the same control group.

g Share Group: All the processes within a control group that share the same code. In
most cases, your program will have more than one share group. Share groups, like control
groups, can be local or remote.

g Workers Group: All the worker threads within a control group. These threads can reside
in more than one share group.

g Lockstep Group: All threads that are at the same PC (program counter). This group is a
subset of a workers group. A lockstep group only exists for stopped threads. By defini-
tion, all members of a lockstep group are within the same workers group. That is, a lock-
step group cannot have members in more than one workers group or more than one
control group.

The first two groups in the above list only contain processes, and the last two only contain
threads. Notice that “same code” means that the processes have the same executable file
name and path.

TotalView lets you manipulate processes and threads individually and by groups. In addi-
tion, you can create your own groups and manipulate a group’s contents (to some extent).

NOTE Not all operating systems let you individually manipulate threads.

Figure 24 on page 27 shows a processor running five processes (ignoring daemons and
other programs not related to your program) and the threads within the processes. The fig-
ure shows a control group and two share groups within this control group.

The elements in this figure are as follows:

CPU The one outer square. All elements in the drawing operate within one
CPU.

Processes The five white inner squares represent processes being executed by
the CPU.

Control Group The large rounded rectangle that surrounds the five processes. This
drawing shows one control group. This diagram doesn’t indicate which
process is the main procedure.

Share Groups The two smaller rounded rectangles having white dashed lines sur-
round processes in a share group. This drawing shows two share
groups within one control group. The three processes in the first share
group have the same executable. The two processes in the second
share group share a second executable.
26 TotalView Users Guide Version 6.2

Understanding Threads, Processes, and Groups

Organizing Chaos
The control group and the share group only contain processes. In contrast, the workers
group and the lockstep group only contain threads. Figure 25 on page 28 show how
TotalView organizes the threads in Figure 24. As you can see, this figure adds the workers
group and two lockstep groups.

NOTE The control group is not shown as it encompasses everything in Figure 25.

The elements in this figure are as follows:

Workers Group All nonmanager threads within the control group make up the workers
group. Notice that this group includes service threads.

Lockstep Group Each share group has its own lockstep groups. Figure 25 shows two
lockstep groups, one in each share group.

If other threads are stopped, this picture indicates that they are not
participating in either of these two lockstep groups. Recall that a

FIGURE 24: Five Processors and Processor Groups (Part 1)

Control Group

Share Group 2

Share Group 1

One Process

The CPU
Version 6.2 TotalView Users Guide 27

2
Understanding Threads, Processes, and Groups

Organizing Chaos
stopped thread is always in a lockstep group. (It’s OK if a lockstep
group has only one member.)

Service Threads Each process has one service thread. While a process can have any
number of service threads, this figure only shows one.

Manager Threads
The only threads that are not participating in the workers group are the
ten manager threads.

Figure 26 extends Figure 25 to show the same kinds of information executing on two
processors.

Figure 26 differs from Figure 25 in that it has ten processes executing within two processors
rather than five processes within one processor. Although the number of processors has
changed, the number of control and share groups is unchanged. This is not to say that the
number of groups could not be different. It’s just that they are not in this example.

FIGURE 25: Five Processors and Processor Groups (Part 2)

Share Group 1

Workers Group

Lockstep Group 1

Lockstep Group 2

Share Group 2

Manager Threads

A Service Thread
28 TotalView Users Guide Version 6.2

Understanding Threads, Processes, and Groups

Creating Groups
Creating Groups

TotalView places processes and threads in groups as your program creates them. The ex-
ception is the lockstep groups that are created or changed whenever a process or thread
hits an action point or is stopped for any reason. While there are many ways in which this
kind of organization can be built, the following steps indicate the beginning of how this
might occur:

1 TotalView and your program are launched and your program begins executing. (See
Figure 27.)

FIGURE 26: Five Processes and Their Groups on Two Computers

FIGURE 27: Step 1: A Program Starts
Version 6.2 TotalView Users Guide 29

2
Understanding Threads, Processes, and Groups

Creating Groups
Control group: A group is created as the program is loaded.

Share group: A group is created as the program begins executing.

Workers group: The thread in the main() routine is the workers group.

Lockstep group: There is no lockstep group because the thread is running.

2 The program forks a process. (See Figure 28.)

Control group: A second process is added to the existing group.

Share group: A second process is added to the existing group.

Workers group: TotalView adds the thread in the second process to the existing group.

Lockstep group: There are no lockstep groups because the threads are running.

3 The second process is exec’d. (See Figure 29 on page 31.)

Control group: The group is unchanged.

Share group: TotalView creates a second share group having this exec’d process as a
member. TotalView removes this process from the first share group.

Workers group: Both threads are in the workers group.

Lockstep group: There are no lockstep groups because the threads are running.

4 The first process hits a break point.

Control group: The group is unchanged.

Share group: The groups are unchanged.

Workers group: The group is unchanged.

Lockstep group: TotalView creates a lockstep group whose member is the thread of the
current process. (In this example, each thread is its own lockstep group.)

FIGURE 28: Step 2: Forking a Process
30 TotalView Users Guide Version 6.2

Understanding Threads, Processes, and Groups

Creating Groups
5 The program is continued and TotalView starts a second version of your program
from the shell. You attach to it within TotalView and put it in the same control group
as your first process. (See Figure 30.)

Control group: TotalView adds a third process.

Share group: TotalView adds this third process to the first share group.

FIGURE 29: Step 3: Exec’ing a Process

FIGURE 30: Step 5: Creating a Second Version
Version 6.2 TotalView Users Guide 31

2
Understanding Threads, Processes, and Groups

Creating Groups
Workers group: TotalView adds the thread in this third process to the group.

Lockstep group: There are no lockstep groups because the threads are running.

6 Your program creates a process on another computer. (See Figure 31.)

Control group: TotalView extends the control group so that it contains the fourth pro-
cess running on the second computer.

Share group: The first share group now contains this newly created process even though
it is running on the second computer.

Workers group: TotalView adds the thread within this fourth process to the workers
group.

Lockstep group: There are no lockstep groups because the threads are running.

7 A process within control group 1 creates a thread. This adds a second thread to one
of the processes. (See Figure 32 on page 33.)

Control group: The group is unchanged.

Share group: The group is unchanged.

Workers group: TotalView adds a fifth thread to this group.

Lockstep group: There are no lockstep groups because the threads are running.

8 A breakpoint is set on a line in a process executing in the first share group, and the
breakpoint is shared. The process executes until all three processes are at the break-
point. (See Figure 33 on page 33.)

FIGURE 31: Step 6: Creating a Remote Process
32 TotalView Users Guide Version 6.2

Understanding Threads, Processes, and Groups

Creating Groups
Control group: The group is unchanged.

Share group: The groups are unchanged.

Workers group: The group is unchanged.

Lockstep groups: TotalView creates a lockstep group whose members are the four
threads in the first share group.

FIGURE 32: Step 7: A Thread Is Created

FIGURE 33: Step 8: Hitting a Breakpoint
Version 6.2 TotalView Users Guide 33

2
Understanding Threads, Processes, and Groups

Simplifying What You’re Debugging
9 You tell TotalView to step the lockstep group. (See Figure 34.)

Control group: The group is unchanged.

Share group: The groups are unchanged.

Workers group: The group is unchanged.

Lockstep group: The lockstep groups are unchanged. (Note that there are other lock-
step groups. This will be explained in Chapter 11.)

Clearly, this example could keep on going until a much more complicated system of pro-
cesses and threads was created. However, adding more processes and threads won’t do
anything much different than what’s been discussed.

Simplifying What You’re Debugging

The reason you’re using a debugger is because your program isn’t operating correctly and
the way you think you’re going to solve the problem (unless it is a &%$# operating system
problem, which, of course, it usually is) is by stopping your program’s threads, examining
the values assigned to variables, and stepping your program so you can see what’s happen-
ing as it executes.

Unfortunately, your multiprocess, multithreaded program and the computers upon which it
is executing have lots of things executing that you want TotalView to ignore. For example,

FIGURE 34: Step 9: Stepping the Lockstep Group
34 TotalView Users Guide Version 6.2

Understanding Threads, Processes, and Groups

Simplifying What You’re Debugging
you don’t want to be examining manager and service threads that the operating system,
your programming environment, and your program create.

Also, most of us are incapable of understanding exactly how a program is acting when per-
haps thousands of processes are executing asynchronously. Fortunately, there are only a
few problems that require full asynchronous behavior at all times.

One of the first simplifications you can make is to change the number of processes. For ex-
ample, suppose you have a buggy MPI program running on 128 processors. Your first step
might be to have it execute in an 8-processor environment.

After you get the program running under TotalView’s control, you will want to run the pro-
cess being debugged to an action point so you can inspect the program’s state at that
place. In many cases, because your program has places where processes are forced to wait
for an interaction with other processes, you can ignore what they are doing.

NOTE TotalView lets you control as many groups, processes, or threads as you need to control. While
each can be controlled individually, you will probably have problems remembering what you’re doing
if you’re controlling large numbers of these things independently. The reason that TotalView creates
and manages groups is so you can focus on portions of your program.

In most cases, you don’t need to interact with everything that is executing. Instead, you
want to focus on one process and the data that this process is manipulating. Things get
complicated when the process being investigated is using data created by other processes,
and these processes might be dependent on other processes.

This means that there is a rather typical pattern to the way you use TotalView to locate
problems:

1 At some point, you should make sure that the groups you are manipulating do not
contain service or manager threads. (You can remove processes and threads from a
group with the dgroups –remove command or the Groups > Edit Group command.)

2 Place a breakpoint in a process or thread and begin investigating the problem. In
many cases, you are setting a breakpoint at a place where you hope the program is
still executing correctly. Because you are debugging a multiprocess, multithreaded
program, you will want to set a barrier point—this is a special kind of breakpoint—so
that all threads and process will stop at the same place.

NOTE Don’t step your program except where you need to individually look at what occurs.
Using barrier points is much more efficient.
Version 6.2 TotalView Users Guide 35

2
Understanding Threads, Processes, and Groups

Simplifying What You’re Debugging
3 After execution stops at a barrier point, look at the contents of your variables. Verify
that your program state is actually correct.

4 Begin stepping your program through its code. In most cases, step your program
synchronously or set barriers so that everything isn’t running freely.

Here’s where things begin to get complicated. You’ve been focusing on one process or
thread. If another process or thread is modifying the data and you become convinced
that this is the problem, you’ll want to go off to it and see what’s going on.

At this point, you need to keep your focus narrow so that you’re only investigating a limited
number of behaviors. This is where debugging becomes an art. A multiprocess, multi-
threaded program can be doing a great number of things. Understanding where to look
when problems occur is the “art.”

For example, you’ll most often execute commands at the default focus. Only when you
think that the problem is occurring in another process will you change to that process.
You’ll still be executing in a default focus, but this time the default focus is concentrated on
other process.

While it will often seem like you need to do a lot of shifting to another focus, what you will
probably do is:

g Modify the focus so that it affects just the next command. If you are using the GUI, you
might select this process and thread from the list displayed in the Root Window. If you are
using the CLI, you would use the dfocus command to limit the scope of a future com-
mand. For example, here’s the CLI command that steps thread 7 in process 3:
dfocus t3.7 dstep

g Use the dfocus command to change focus temporarily, execute a few commands, and
then return to the original focus.

What you’ve been reading is just an overview of the threads, processes, and groups. You’ll
find a lot more information in Chapter 11, “Using Groups, Processes, and Threads” on page 239.
36 TotalView Users Guide Version 6.2

Part II: Setting Up
This section of the TotalView Users Guide contains information about running TotalView
in the different kinds of environments you execute your program in.

Chapter 3: Setting Up a Debugging Session
The way you configure your personal environment is the same on all
operating systems and in all environments. This chapter tells you
what you need to know to start TotalView and tailor how it works.

You should, at a minimum, glance at this chapter to see what’s here
so you can come back at a later time, if necessary.

Chapter 4: Setting Up Remote Debugging Sessions
When you are debugging a program that has processes executing on
a remote computer, TotalView launches server processes when your
program launches remote processes. The primary focus of this chap-
ter is what to do when there are problems.

If you aren’t having problems, you probably won’t need the informa-
tion in this chapter.

Chapter 5: Setting Up Parallel Debugging Sessions
TotalView lets you debug programs created using many different par-
allel environments such as OpenMP, MPI, MPICH, UPC, and the like.
This chapter discusses each environment.

Because this chapter has individual presentations for the different
environments, locate what you need and skip the rest.
Version 6.2 TotalView Users Guide 37

38 TotalView Users Guide Version 6.2

Version 6.2
Chapter 3
Setting Up a Debugging Session
This chapter explains how to set up a TotalView session. It also describes some common
commands and procedures. For information on setting up remote debugging sessions,
see Chapter 4, “Setting Up Remote Debugging Sessions” on page 73. For information on
setting up parallel debugging sessions, see Chapter 5, “Setting Up Parallel Debugging
Sessions” on page 91.

In this chapter, you will learn about:

g “Compiling Programs” on page 40
g “Exiting from TotalView” on page 46
g “Exiting from TotalView” on page 46
g “Loading Executables” on page 46
g “Attaching to Processes” on page 49
g “Detaching from Processes” on page 52
g “Examining Core Files” on page 53
g “Viewing Process and Thread State” on page 54
g “Handling Signals” on page 56
g “Setting Search Paths” on page 59
g “Setting Command Arguments” on page 61
g “Setting Input and Output Files” on page 62
g “Setting Preferences” on page 64
g “Setting Environment Variables” on page 70
g “Monitoring TotalView Sessions” on page 71
TotalView Users Guide 39

3
Setting Up a Debugging Session

Compiling Programs
Compiling Programs

Before you start debugging a program, you must compile it. The only thing you do
differently when debugging with TotalView is to compile using the –g option. This
option tells your compiler to generate symbol table debugging information. For ex-
ample:

cc –g –o executable source_program

You can also debug programs that you did not compile using the –g option or pro-
grams for which you don’t have source code. For more information, refer to “Viewing
the Assembler Version of Your Code” on page 216.

Table 3 presents some general considerations, but you should check “Compilers and
Platforms”, in the TOTALVIEW REFERENCE GUIDE to determine the exact syntax and any
other considerations.

Table 3: Compiler Considerations

Compiler Option or Library What It Does When to Use It
Debugging symbols option
(usually –g)

Generates debugging
information in the symbol
table.

Before debugging any
program with TotalView.

Optimization option (usually
–O)

Rearranges code to optimize
your program’s execution.

Some compilers won’t let you
use the –O and the –g option
at the same time.

Even if your compiler lets you
use the –O option, don’t do it
when debugging your program
as strange results often occur.

After you finish debugging
your program with TotalView.
40 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Starting TotalView
File Extensions

When TotalView reads a file, it uses the file's extension to determine the program-
ming language. If TotalView does the wrong thing, you can have it do the right thing
by setting the TV::suffixes variable in a startup file. For more information, see the
“TotalView Variables” chapter in the TOTALVIEW REFERENCE GUIDE.

Starting TotalView

TotalView can debug programs that run in many different computing environments
and which use a variety of parallel processing modes. This section looks at few of
the ways you can start TotalView. The “TotalView Command Syntax” chapter in the
TOTALVIEW REFERENCE GUIDE contains more detailed information.

In most cases, the command for starting TotalView looks like:

totalview [executable [corefile]] [options]

where executable is the name of the executable file you will be debugging and corefile
is the name of the core file being examined.

Multiprocess programming library
(usually dbfork)

Uses special versions of the
fork() and execve() system
calls.

In some cases, you will need to
use –lpthread.

Using dbfork is discussed in
“Linking with the dbfork Library”
contained in the “Compilers and
Platforms” Chapter of the
TOTALVIEW REFERENCE
GUIDE.

Before debugging a
multiprocess program that
explicitly calls fork() or
execve().

Refer to “Processes That Call
fork()” on page 348 and
“Processes That Call execve()”
on page 348.

Table 3: Compiler Considerations

Compiler Option or Library What It Does When to Use It

CLI EQUIVALENT: totalviewcli [executable [corefile]] [options]
Version 6.2 TotalView Users Guide 41

3
Setting Up a Debugging Session

Starting TotalView
In some cases, you may need to do something different. For example, if you are
debugging an MPI program, you must invoke TotalView on mpirun. You’ll find
details in Chapter 5, “Setting Up Parallel Debugging Sessions” on page 91.

If the GUI is executing, you can invoke the CLI by selecting the Tools > Command
Line command. In this case, both the GUI and the CLI will be executing.

Here are some examples that show how to start TotalView:

Just start TotalView
totalview Starts TotalView without loading a program or core file. After

TotalView starts, you can load a program by using the File >
New Program command.

Debugging a program
totalview executable

Starts TotalView and loads the executable program.

Debugging a core file
totalview executable corefile

Starts TotalView and loads the executable program and the core-
file core file.

Passing arguments to the program being debugged
totalview executable –a args

Starts TotalView and passes all the arguments following –a to
the executable program. When you use the –a option, you must
enter it as the last TotalView option on the command line.

CLI EQUIVALENT: totalviewcli then dload executable

CLI EQUIVALENT: totalviewcli executable

CLI EQUIVALENT: dattach –c corefile –e executable

CLI EQUIVALENT: totalviewcli executable –a args
42 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Starting TotalView
If you don’t use –a and want to add arguments after TotalView
loads your program, use the Process > Startup command.

Debugging a program that runs on another computer
totalview executable –remote hostname_or_address[:portnumber]

Starts TotalView on your local host and the TotalView Debug-
ger Server (tvdsvr) on a remote host. After TotalView begins ex-
ecuting, it loads the program specified by executable for remote
debugging. You can specify a host name or a TCP/IP address. If
you need to, you can also enter the TCP/IP port number.

For more information on:

g Debugging parallel programs such as MPI, PVM, or UPC, refer to Chapter 5, “Set-
ting Up Parallel Debugging Sessions” on page 91.

g The totalview command, refer to “TotalView Command Syntax” in the TOTALVIEW
REFERENCE GUIDE.

g Remote debugging, refer to “Starting the TotalView Debugger Server” on page 73 and
“TotalView Debugger Server (tvdsvr) Command Syntax” in the TOTALVIEW REFERENCE
GUIDE.

Initializing TotalView

When TotalView begins executing, it can grab initialization from many places. The
two most commonly used are initialization files that you create and preference files
that TotalView creates.

An initialization file is a place where you can store CLI functions, set variables, and
execute actions. TotalView will execute this file whenever it starts executing. This
file, which you must name tvdrc, resides in a .totalview subdirectory contained in
your home directory.

TotalView can actually read more than one initialization file. You can place these
files in your installation directory, the .totalview subdirectory, or the directory in

CLI EQUIVALENT: dset ARGS_DEFAULT {value}

CLI EQUIVALENT: totalviewcli executable
–r hostname_or_address[:portnumber]
Version 6.2 TotalView Users Guide 43

3
Setting Up a Debugging Session

Starting TotalView
which you invoke TotalView. If the file is present in one or all of these places,
TotalView reads and executes its contents. Only the initialization file within your
.totalview directory has the name tvdrc. The other initialization files have the name
.tvdrc. Notice the dot preceding the file name.

NOTE Before Version 6.0, you would place your personal .tvdrc file in your home directory.
If you do not move this file into the .totalview directory, TotalView will still find it. However, if
you also have a tvdrc file in the .totalview directory, TotalView will ignore the .tvdrc in your
home directory.

TotalView writes your preferences file into your .totalview subdirectory. It’s name is
preferences6.tvd. Do not modify this file as TotalView will overwrite it whenever it
saves your preferences.

If you add the –s filename option to either the totalview or totalviewcli shell com-
mand, TotalView executes the CLI commands contained in filename. This startup file
will execute after .tvdrc files execute. The –s option lets you, for example, initialize
the debugging state of your program, run the program you’re debugging until it
reaches some point where you’re ready to begin debugging, and even lets you cre-
ate a shell command that starts the CLI.

Figure 35 shows the order in which TotalView executes initialization and startup
files.

FIGURE 35: Startup and Initialization Sequence

preferences6.tvd

.Xdefaults

global tvdinit.tvd

global .tvdrc

-e and –s

tvdrc

a local .tvdrc

command options
44 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Starting TotalView
The .Xdefaults file, which is actually read by the server when you start X Windows,
is only used by the GUI. The CLI ignores it. Prior to TotalView release 6.0, the
.Xdefaults file was extensively used. Beginning at TotalView 6.0, its use is negligible.

NOTE If you have an X resources file, TotalView will read it the first time Release 6.0 starts
executing. It will then write any TotalView resources it finds to your preferences6.tvd file. If
you change a value after this file is written, TotalView will ignore your change. The only excep-
tions are Visualizer X resources. For information on these resources, go to www.et-
nus.com/Support/docs/ xresources/XResources.html. You can force TotalView to reread your X
resources by deleting your preferences file.

As part of the initialization process, TotalView exports three environment variables
into your environment: LM_LICENSE_FILE, TVROOT, and either SHLIB_PATH or
LD_LIBRARY_PATH.

If you have saved a action point file into the same subdirectory as your program,
TotalView automatically reads the information in this file when it loads your pro-
gram.

NOTE The format of a Release 6.0 action point file differs from that used in earlier releases.
While TotalView 6.0 can read action point files created by earlier versions, earlier versions can-
not read a Release 6.0 action point file.

You can also invoke scripts by naming them in the TV::process_load_callbacks list.
For information, see “Initializing TotalView After Loading an Image” in the “Type Transfor-
mations” chapter of the TOTALVIEW REFERENCE GUIDE.

If you are debugging multiprocess programs that run on more than one computer,
TotalView caches library information in the .totalview subdirectory. If you wish to
move this cache to another location, set the TV::library_cache_directory to this lo-
cation. The files within this cache directory can be shared among users.
Version 6.2 TotalView Users Guide 45

3
Setting Up a Debugging Session

Exiting from TotalView
Exiting from TotalView

You can exit from TotalView by selecting the File > Exit command. You can select
this command in the Root, Process, and Variable Windows. (See Figure 36.)

Select Yes to exit. Otherwise, select No. As TotalView exits, it kills all programs and
processes that it started. However, programs and processes that TotalView did not
start continue to execute.

NOTE If you have a CLI window open, TotalView also closes this window. Similarly, if you
type “exit” in the CLI, the CLI will close GUI windows.

Loading Executables

TotalView can debug programs on local and remote hosts and programs that you
access over networks and serial lines. The File > New Program command, which is
located in the Root and Process Windows, loads local and remote programs, core
files, and processes that are already running. (See Figure 37.)

FIGURE 36: File > Exit Dialog Box

CLI EQUIVALENT: exit
46 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Loading Executables
The controls within this dialog box lets you:

g Load a new executable
Type the path name into the Executable field.

g Load a core file
Type the name into the Core File field. You must also type the path name of the
executable associated with this core file in the Executable field.

g Load a program using process ID
Type a process ID into the Process ID field and type the associated executable’s
path name into the Executable field.

FIGURE 37: File > New Program Dialog Box

CLI EQUIVALENT: dload –e executable

CLI EQUIVALENT: dattach –c corefile –e executable

CLI EQUIVALENT: dattach executable pid
Version 6.2 TotalView Users Guide 47

3
Setting Up a Debugging Session

Loading Executables
If you need to debug a program on a remote machine, type the machine’s host
name or IP address in the Remote Host field. If the program is local, make sure that
you have selected the Local button.

You can use a full or relative path name in the Executable and Core File fields. If
you enter a file name, TotalView searches for it in the list of directories named using
the File > Search Path command or listed in your PATH environment variable.

If you select New Process, TotalView always loads a new copy of the program you
named in the Executable field. Even if the program is already loaded, TotalView
loads another copy.

Debugging over a serial line is discussed in “Debugging Over a Serial Line” on page 86.

Loading Remote Executables

If TotalView fails to automatically load a remote executable, you may need to dis-
able autolaunching for this connection and manually start the TotalView Debugger
Server (tvdsvr) manually. (Autolaunching is the process of automatically launching
tvdsvr processes.) You can disable autolaunching by adding the hostname:portnumber
suffix to the name you type in the Remote Host field. As always, the portnumber is
the TCP/IP port number on which the debugger server is communicating with
TotalView. Refer to “Starting the TotalView Debugger Server” on page 73 for more infor-
mation.

NOTE You cannot examine core files on remote systems.

You can connect to a remote machine in three ways:

g Using the –remote command-line option when you start TotalView. For details on
the syntax for the –remote command-line option, see “Starting TotalView” on page
41.

CLI EQUIVALENT: dload executable –r hostname

CLI EQUIVALENT: dset EXECUTABLE_PATH
48 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Attaching to Processes
g With the File > New Program command after you start TotalView.

g By first connecting to a remote host using the File > New Program command
and then displaying the Unattached Page of the Root Window. You can now at-
tach to these programs by diving into them.

NOTE If TotalView supports your program’s parallel process runtime library (for example,
MPI, PVM, or UPC), it automatically connects to remote hosts. For more information, see
Chapter 5, “Setting Up Parallel Debugging Sessions” on page 91.

Attaching to Processes

If a program you’re testing is hung or looping (or misbehaving in some other way),
you can attach to it while it is running. You can attach to single processes, multipro-
cess programs, and these programs can be running remotely.

To attach to a process, either use the Unattached Page in the Root Window or use
the File > New Program command located on the Root and Process Windows. (Us-
ing the Unattached Page is easier if the process is listed. However, if it’s not there,
you must use the File > New Program command.)

If the process or any of its children calls the execve() routine, you may need to at-
tach to it by creating a new Process Window. This is because TotalView relies on the
ps command to obtain the process name, and it can make mistakes.

NOTE When you exit from TotalView, TotalView kills all programs and processes that it
started. However, programs and processes that were executing before you brought them un-
der TotalView’s control continue to execute.

CLI EQUIVALENT: dload executable –r hostname

CLI EQUIVALENT: If you’re using the CLI, you will need to know the file’s
name so that you can use the dattach command to attach
to the program.

CLI EQUIVALENT: dattach executable pid
Version 6.2 TotalView Users Guide 49

3
Setting Up a Debugging Session

Attaching to Processes
Attaching Using the Unattached Page

Here’s the procedure for using the Unattached Page to attach a process:

1 Go to the Root Window and select the Unattached Page tab.

This page lists the process ID, status, and name of each process associated with
your username. The processes that appear dimmed are those that are being de-
bugged or those that TotalView won’t allow you to debug. For example, you can’t
debug the TotalView process itself. (See Figure 38.) The processes at the top of
this figure are local. The remaining processes are remote.

If you’re debugging a remote process, the Unattached Page also shows pro-
cesses running under your username on each remote host name. You can attach
to any of these remote processes. For more information on remote debugging,
refer to “Starting the TotalView Debugger Server” on page 73 and “TotalView Debugger
Server (tvdsvr) Command Syntax” in the TOTALVIEW REFERENCE GUIDE.

2 Dive into the process you wish to debug by double-clicking on it.

A Process Window appears. The right arrow points to the current program
counter (PC), indicating where the program was executing when TotalView at-
tached to it.

FIGURE 38: Unattached Page
50 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Attaching to Processes
Attaching Using File > New Program and dattach

Here’s the procedure for using the Root Window’s File > New Program command
to attach to a process:

1 Use the ps shell command to obtain the process ID (PID) of the process.

2 Select the File > New Program command. TotalView displays the dialog box
shown in Figure 39.

Enter a file name in the Executable field. This name can be a full or relative path
name. If you supply a simple file name, TotalView searches for it in the directories
named using the File > Search Path command or listed in your PATH environ-
ment variable.

Enter the process ID (PID) of the unattached process into the Process ID field.

3 Select OK.

FIGURE 39: File > New Program Dialog Box

CLI EQUIVALENT: dattach pid

dset EXECUTABLE_PATH
Version 6.2 TotalView Users Guide 51

3
Setting Up a Debugging Session

Detaching from Processes
If the executable is a multiprocess program, TotalView asks if you want to attach to
all relatives of the process. To examine all processes, select Yes.

If the process has children that call execve(), TotalView tries to determine each
child’s executable. If TotalView can’t figure it out, you must delete (kill) the parent
process and start it again using TotalView.

A Process Window will appear. In this window, the right arrow points to the current
program counter (PC), which is where the program was executing when TotalView
attached to it.

Detaching from Processes

You can use the following procedure to detach from processes that TotalView did
not create:

1 After opening a Process Window on the process, select the Thread >
Continuation Signal command. Choose the signal that TotalView should send
to the process when it detaches from the process. For example, to detach
from a process and leave it stopped, set the continuation signal to SIGSTOP.
(See Figure 40.)

FIGURE 40: Thread > Continuation Signal Dialog Box

CLI EQUIVALENT: No equivalent to Thread > Continuation exists.
52 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Examining Core Files
2 Select the Process > Detach command.

When you detach from a process, TotalView removes all breakpoints that you have
set within it.

Examining Core Files

If a process encounters a serious error and dumps a core file, you can look at it us-
ing one of the following methods:

g Start TotalView as follows:
totalview filename corefile [options]

g Select the File > New Program command from the Root Window. In the middle
section of the dialog box, type the name of the core file in the Core File field, and
then select OK. In the top portion, enter the executable’s name.

NOTE You can only debug local core files. You can, however, debug core files at a remote
location if you log on to the remote machine and then start TotalView on the now local core
file. In this case, TotalView is running locally on the remote machine (that is, TotalView is now
local to the machine upon which the application and core file reside).

The Process Window displays the core file, with the Stack Trace, Stack Frame, and
Source Panes showing the state of the process when it dumped core. The title bar
of the Process Window names the signal that caused the core dump. The right
arrow in the line number area of the Source Pane indicates the value of the program
counter (PC) when the process encountered the error.

You can examine the state of all variables at the time the error occurred. “Examining
and Changing Data” on page 277 contains more information.

If you start a process while you’re examining a core file, TotalView stops using the
core file and switches to this new process.

CLI EQUIVALENT: ddetach

CLI EQUIVALENT: totalviewcli filename corefile [options]

CLI EQUIVALENT: dattach –c corefile –e executable
Version 6.2 TotalView Users Guide 53

3
Setting Up a Debugging Session

Viewing Process and Thread State
Viewing Process and Thread State

Process and thread state is displayed in:

g The Attached Page of the Root Window, for processes and threads.

g The Unattached Page of the Root Window, for processes.

g The process and thread status bars of the Process Window.

g The Threads Pane of the Process Window.

g The P/T Set Browser.

Figure 41 shows TotalView displaying process state information in the Attached
Page.

FIGURE 41: Attached Page Showing Process and Thread Status

➊ Collapse/expand toggle ➍ Program name
➋ TotalView thread ID (TID) ➎ Process status
➌ System thread ID (SYSTID) ➏ Action point ID number

➊ ➍

➏

➋ ➌

➎

54 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Viewing Process and Thread State
The status of a process includes the process location, the process ID, and the state
of the process. (These characters are explained in “Attached Process States” on page
55.)

The Unatttached Page lists all processes associated with your username. The infor-
mation in this page is similar to the information in the Attached Page, differing only
in that TotalView dims out the processes being debugged. The status bars in the
Process Window display similar information. (See Figure 42.)

NOTE If the TotalView-assigned thread ID and the system-assigned thread ID are the same,
TotalView displays only one ID value.

Attached Process States

TotalView uses the following letters to indicate process and thread state. (The posi-
tion of these letters in the Attached Page is indicated by ➎ in Figure 41.):

The Error state usually indicates that your program received a fatal signal such as
SIGSEGV, SIGBUS, or SIGFPE from the operating system. See “Handling Signals” on

CLI EQUIVALENT: dstatus and dptsets

When you use either of these commands, TotalView also dis-
plays state information.

FIGURE 42: Process and Thread Labels in the Process Window

Table 4: Attached Process and Thread States

State Code State Name
blank Exited or never created
B At breakpoint
E Error reason
K In kernel
M Mixed
R Running
T Stopped reason
W At watchpoint
Version 6.2 TotalView Users Guide 55

3
Setting Up a Debugging Session

Handling Signals
page 56 for information on controlling how TotalView handles signals that your pro-
gram receives.

Unattached Process States

TotalView derives the state information for a process displayed in the Unattached
Page from the operating system. The state characters TotalView uses to summarize
the state of an unattached process do not necessarily match those used by the op-
erating system. Here are the state indicators that TotalView displays:

Handling Signals

If your program contains a signal handler routine, you may need to adjust the way
TotalView handles signals. You can do this using:

g A dialog box (described in this section)

g The –signal_handling_mode command-line option to the totalview and
totalviewcli commands (refer to “TotalView Command Syntax” in the TOTALVIEW
REFERENCE GUIDE)

CLI EQUIVALENT: The CLI prints out a word indicating the state; for example,
“breakpoint.”

Table 5: Summary of Unattached Process States

State Code State Description
I Idle
R Running
S Sleeping
T Stopped
Z Zombie
56 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Handling Signals
Unless you tell TotalView otherwise, here is how it handles UNIX signals:

NOTE TotalView uses the SIGTRAP and SIGSTOP signals internally. If a process receives ei-
ther of these signals, TotalView neither stops the process with an error nor passes the signal
back to your program. You cannot alter the way TotalView uses these signals.

On some systems, hardware registers affect how TotalView and your program han-
dle signals such as SIGFPE. For more information, refer to “Interpreting Status and
Control Registers” on page 237 and “Architectures” in the TOTALVIEW REFERENCE GUIDE.

NOTE If you are using an SGI computer, setting the TRAP_FPE environment variable to any
value indicates that your program will trap underflow errors. If you set this variable, however,
you will also need to use the controls in the File >Signals Dialog Box to indicate what
TotalView should do with SIGFPE errors. (In most cases, you will set SIGFPE to Resend.) As an
alternative, you can use the –signal_handling_mode “action_list” option.

You can change the signal handling mode using the File > Signals command. (See
Figure 43 on page 58.)

NOTE The signal names and numbers that TotalView displays are platform specific.

When your program receives a signal, TotalView stops all related processes. If you
don’t want this behavior, clear the Stop control group on error signal button

Table 6: Default Signal Handling Behavior

Signals that TotalView Passes Back
to Your Program Signals that TotalView Treats as Errors

SIGHUP SIGIO SIGILL SIGPIPE
SIGINT SIGIO SIGTRAP SIGTERM
SIGQUIT SIGPROF SIGIOT SIGTSTP
SIGKILL SIGWINCH SIGEMT SIGTTIN
SIGALRM SIGLOST SIGFPE SIGTTOU
SIGURG SIGUSR1 SIGBUS SIGXCPU
SIGCONT SIGUSR2 SIGSEGV SIGXFSZ
SIGCHLD SIGSYS
Version 6.2 TotalView Users Guide 57

3
Setting Up a Debugging Session

Handling Signals
(which is found in the Options Page of the File > Preferences Dialog Box. (See
Figure 48.)

When your program encounters an error signal, TotalView opens or raises the Pro-
cess Window. Clearing the Open process window on error signal check box, also
found on the Options Page in the File > Preferences Dialog Box, tells TotalView that
it should not open or raise windows.

If processes in a multiprocess program encounter an error, TotalView only opens a
Process Window for the first process that encounters an error. (If it did it for all of
them, TotalView would be filling up the screen with Process Windows.)

FIGURE 43: File > Signals Dialog Box

CLI EQUIVALENT: dset TV::warn_step_throw

CLI EQUIVALENT: dset TV::GUI::pop_on_error
58 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Setting Search Paths
If you select the Open process window at breakpoint check box, which is found in
the File > Preferences’ Action Points Page, TotalView opens or raises the Process
Window when your program reaches a breakpoint.

Make your changes by selecting one of the following radio buttons:

Error Stops the process, places it in the error state, and displays an
error in the title bar of the Process Window. If you have also se-
lected the Stop control group on error signal check box,
TotalView will also stop all related processes. Select this but-
ton for severe error conditions such as SIGSEGV and SIGBUS.

Stop Stops the process and places it in the stopped state. Select this
button if you want TotalView to handle this signal as it would a
SIGSTOP signal.

Resend Sends the signal back to the process. This setting lets you test
your program’s signal handling routines. TotalView sets the
SIGKILL and SIGHUP signals to Resend as most programs have
handlers to handle program termination.

Ignore Discards the signal and continues the process. The process
will not know that something had raised a signal.

NOTE Do not use Ignore mode for fatal signals such as SIGSEGV and SIGBUS. If you do,
TotalView can get caught in a signal/resignal loop with your program; the signal will immedi-
ately recur because the failing instruction repeatedly reexecutes.

Setting Search Paths

If your source code, executable, and object files reside in different directories, set
search paths for these directories with the File > Search Path command. You do
not need to use this command if these directories are already named in your envi-
ronment’s PATH variable.

These search paths apply to all processes that you’re debugging. (See Figure 44 on
page 60.)

TotalView searches the following directories (in order):

CLI EQUIVALENT: TV::GUI::pop_at_breakpoint
Version 6.2 TotalView Users Guide 59

3
Setting Up a Debugging Session

Setting Search Paths
1 The current working directory (.).

2 The directories you specify by using the File > Search Path command in the
exact order you enter them.

3 If you entered a full path name for the executable when you started
TotalView, TotalView searches this directory.

4 If your executable is a symbolic link, TotalView will look in the directory in
which your executable actually resides for the new file.

As you can have multiple levels of symbolic links, TotalView keeps on following
links until it finds the actual file. After it has found the executable, it will look in
the executable's directory for your file. If it isn’t there, it’ll back up the chain of
links until either it finds the file or determines that the file can’t be found.

5 The directories specified in your PATH environment variable.

When entering directories into this dialog box, you must enter them in the order
you want them searched, and you must enter each on its own line.

g You can type path names directly.

g You can cut and paste directory information.

FIGURE 44: File > Search Path Dialog Box
60 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Setting Command Arguments
g You can use the Insert button to tell TotalView to display the Select Directory
dialog box that lets you browse through the file system, interactively selecting
directories. (See Figure 45 on page 61.)

The current working directory (.) in the File > Search Path Dialog Box is the first
directory listed in the window. TotalView interprets relative path names as being rel-
ative to the current working directory.

If you remove the current working directory, TotalView reinserts it at the top of the
list.

After you change this list of directories, TotalView again searches for the source file
of the routine being displayed in the Process Window.

You can also specify search directories using the TV::search_path variable.

Setting Command Arguments

When TotalView creates a process, it uses the name of the file containing the exe-
cutable code for the process’s program name. If your program requires command-

FIGURE 45: Select Directory Dialog Box
Version 6.2 TotalView Users Guide 61

3
Setting Up a Debugging Session

Setting Input and Output Files
line arguments and you hadn’t entered them using TotalView’s –a command-line
option, here’s how you can set these arguments before you start the process:

1 Select the Arguments Tab within the Process > Startup Parameters Dialog
Box. (See Figure 46 on page 62.)

2 Type the arguments you want TotalView to pass to your program. Either sep-
arate each argument with a space or place each one on a separate line. If an
argument contains spaces, enclose the entire argument in double quotes.
When you’re done, select OK.

Setting Input and Output Files

Before your program begins executing, TotalView defines how it will manage stan-
dard input (stdin) and standard output (stdout). Unless you tell it otherwise, stdin
and stdout use the shell window from which you invoked TotalView.

FIGURE 46: Process > Startup Parameters Dialog Box: Arguments Page

CLI EQUIVALENT: dset ARGS_DEFAULT {value}
62 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Setting Input and Output Files
The Process > Startup command lets you redirect stdin or stdout. You can only do
this before your program begins executing. Here’s how:

1 Select the Standard I/O Tab from the dialog box displayed when you invoke
the Process > Startup Parameters command. (See Figure 47 on page 63.)

2 Type the name of the file, relative to your current working directory. Entering
names in these text boxes is equivalent to using <, >, or >& symbols in
most shells.

3 Select OK.

If you select the Append check box, TotalView appends new information to the end
of the file if the file already exists. If it isn’t checked, TotalView overwrites the file’s
contents.

If you select the Same as output check box, TotalView writes stderr information to
the same place indicated in the Standard Output field.

FIGURE 47: Process > Startup Parameters Dialog Box: Standard I/O Page

CLI EQUIVALENT: drun and drerun have arguments that let you reset stdin,
stdout, and stderr.
Version 6.2 TotalView Users Guide 63

3
Setting Up a Debugging Session

Setting Preferences
Setting Preferences

The File > Preferences command lets you tailor many of TotalView’s behaviors.
This section contains an overview of these preferences. Detailed explanations are
in the online Help.

Some settings such as the prefixes and suffixes looked at when loading dynamic li-
braries can be different from operating system to operating system. If these set-
tings can differ, TotalView will let you set values for each operating system. This is
done transparently, which means that you only see an operating system’s values
when you are running TotalView on that operating system. In general, this applies to
the server launch strings and dynamic library paths.

NOTE Every preference has a a variable that can be set using the CLI. These variables are
described in the TotalView Reference Guide.

g Options. This page contains check boxes that are either general in nature or that
influence different parts of the system. (See Figure 48.)

g Action Points. The commands on this page indicate if TotalView should stop any-
thing else when it encounters an action point, the scope of the action point, au-

FIGURE 48: File > Preferences Dialog Box: Options Page
64 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Setting Preferences
tomatic saving and loading of action points, and if TotalView should open a
Process Window for the process encountering a breakpoint. (See Figure 49.)

g Launch Strings. The three areas of this page let you set the launch string that
TotalView uses when it launches the tvdsvr remote debugging server, the Visual-
izer, and a source code editor. Notice that default values exist for these launch
strings. (See Figure 50 on page 66.)

g Bulk Launch. The fields and commands on this page configure TotalView’s bulk
launch system. See Chapter 4 for more information. (See Figure 51 on
page 66.)

g Dynamic Libraries. This page lets you control which symbols are added to
TotalView when it loads a dynamic library. (See Figure 52 on page 67.)

g Parallel. This page lets you define what will occur when your program goes paral-
lel. (See Figure 53 on page 67.)

g Fonts. Use this page to specify the fonts used in the user interface and when
TotalView displays your code. (See Figure 54 on page 68.)

g Formatting. Use this page to control how your program’s variables are displayed.
(See Figure 55 on page 68.)

g Pointer Dive. Use this page to control how pointers are dereferenced and how
pointers to arrays are cast. (See Figure 56 on page 69.)

FIGURE 49: File > Preferences Dialog Box: Action Points Page
Version 6.2 TotalView Users Guide 65

3
Setting Up a Debugging Session

Setting Preferences
FIGURE 50: File > Preferences Dialog Box: Launch Strings Page

FIGURE 51: File > Preferences Dialog Box: Bulk Launch Page
66 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Setting Preferences
FIGURE 52: File > Preferences Dialog Box: Dynamic Libraries Page

FIGURE 53: File > Preferences Dialog Box: Parallel Page
Version 6.2 TotalView Users Guide 67

3
Setting Up a Debugging Session

Setting Preferences
FIGURE 54: File > Preferences Dialog Box: Fonts Page

FIGURE 55: File > Preferences Dialog Box: Formatting Page
68 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Setting Preferences
Setting Preferences, Options, and X Resources

While preferences are the best way to set many of TotalView’s features and charac-
teristics, TotalView also lets you use variables and command-line options to set fea-
tures and characteristics.

Older versions of TotalView did not have a preference system. Instead, you needed
to set values in your .Xdefaults file or in a command-line option. For example, set-
ting totalview*autoLoadBreakpoints to true tells TotalView that is should automat-
ically load an executable’s breakpoint file when it loads an executable. Because you
can also set this option as a preference and set it using the CLI’s dset command,
this X resource has been deprecated.

NOTE “Deprecated” means that the feature is still available. While the feature may exist for
a while, there’s no guarantee that it will continue to work. All “totalview” options have been
deprecated. Those used for setting the Visualizer are still supported.

Similarly, documentation for earlier releases told you how to use a command-line
option to tell TotalView to automatically load breakpoints, and there were two dif-

FIGURE 56: File > Preferences Dialog Box: Pointer Dive Page
Version 6.2 TotalView Users Guide 69

3
Setting Up a Debugging Session

Setting Environment Variables
ferent command-line options to perform this action. While these methods still
work, they are also deprecated.

Visualizer X resources are still supported. Documentation for them can be found at
www.etnus.com/Support/docs/ xresources/XResources.html.

In some cases, you may want to set a state for one session or you may want to
override one of your preferences. (A preference indicates a behavior that you want
to occur in all of your TotalView sessions.) This is the function of the command-line
options described in “TotalView Command Syntax” in the TOTALVIEW REFERENCE GUIDE.

For example, you can use –bg to set the background color for TotalView windows in
the TotalView session just being invoked. TotalView does not remember changes to
its default behavior that you make using command-line options. You have to set
them again when you start a new session.

Setting Environment Variables

You can set and edit the environment variables that TotalView passes to processes.
When TotalView creates a new process, it passes a list of environment variables to
the process. You can add to this list by using the Environment Page in the Process
> Startup Parameters Dialog Box.

NOTE TotalView does not display the variables that it was passed. Instead, it just displays
the variables you have added to the environment using this command.

The format for specifying an environment variable is name=value. For example, the
following definition creates an environment variable named DISPLAY whose value is
enterprise:0.0:

DISPLAY=enterprise:0.0

To add, delete, or modify environment variables that you enter, select the
Environment Tab from the dialog box displayed when you invoke the Process >
Startup Parameters command. See Figure 57.

When entering environment variables, place each on a separate line. The actions
you can now perform are:
70 TotalView Users Guide Version 6.2

Setting Up a Debugging Session

Monitoring TotalView Sessions
g Changing the name or value of an environment variable by editing a line.

g Adding a new environment variable by inserting a new line and specifying a name
and value.

g Deleting an environment variable that you added by deleting a line. If you delete
all lines, the process again inherits the environment used by TotalView or tvdsvr.

Monitoring TotalView Sessions

TotalView logs all significant events occurring for all processes being debugged. To
view the event log, select the Root Window’s Log Tab. This page displays a sequen-
tial list of these events. See Figure 58 on page 72 for an example.

You can set the amount of information TotalView writes to this window by using the
CLI’s dset command to set the VERBOSE variable. If you always want it set to a
value, you can set it in your .tvdrc file. For example:

dset VERBOSE WARNING

FIGURE 57: Process > Startup Parameters Dialog Box: Environment Page
Version 6.2 TotalView Users Guide 71

3
Setting Up a Debugging Session

Monitoring TotalView Sessions
FIGURE 58: Root Window Log Page
72 TotalView Users Guide Version 6.2

Version 6.2
Chapter 4
Setting Up Remote Debugging
Sessions
This chapter explains how to set up TotalView remote debugging sessions. This chapter
discusses:

g “Starting the TotalView Debugger Server” on page 73
g “Debugging Over a Serial Line” on page 86

Starting the TotalView Debugger Server

Debugging a remote process with TotalView is only slightly different than debugging
a native process in that:

g TotalView needs to work with a TotalView processes that will be running on re-
mote machines. This remote TotalView process, which TotalView usually auto-
matically launches, is called the TotalView Debugger Server (tvdsvr).

g TotalView’s performance depends on your network’s performance. If the network
is overloaded, debugging can be slow.

Unless you tell it otherwise, TotalView automatically launches tvdsvr in one of the
following ways:

g It can independently launch a tvdsvr on each remote host. This is called single-
process server launch.

g It can launch all remote processes at the same time. This is called bulk server
launch.

Because TotalView can automatically launch tvdsvr, there’s nothing you need to do
when you’re debugging remote processes. It shouldn’t matter to you if a process is
local or remote.
TotalView Users Guide 73

4
Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
NOTE If the default single-process server launch procedure meets your needs and you’re not
experiencing an problems accessing remote processes from within TotalView, you can safely
ignore the information in this chapter. If you do experience a problem launching the server,
you should check that the tvdsvr process is in your path.

Topics in this section are:

g “Setting Single-Process Server Launch Options” on page 74

g “Setting Bulk Launch Window Options” on page 76

g “Starting the Debugger Server Manually” on page 79

g “Using the Single-Process Server Launch Command” on page 80

g “Bulk Server Launch on an SGI MIPs Machine” on page 81

g “Bulk Server Launch on an HP Alpha Machine” on page 83

g “Bulk Server Launch on an IBM RS/6000 AIX Machine” on page 83

g “Disabling Autolaunch” on page 84

g “Changing the Remote Shell Command” on page 84

g “Changing the Arguments” on page 85

g “Autolaunch Sequence” on page 86

Setting Single-Process Server Launch Options

The Enable single debug server launch preferences in the Launch Strings Page of
the File > Preferences Dialog Box lets you disable autolaunch, change the com-
mand that TotalView uses when it launches remote servers, and alters the amount
of time TotalView waits when establishing connections to a tvdsvr process. (See
Figure 59 on page 75.)
74 TotalView Users Guide Version 6.2

Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
Enable single debug server launch
If you select this check box, TotalView will independently
launch the TotalView Debugger Server (tvdsvr) on each remote
system.

Note Even if you have enabled bulk server launch, you
probably also want this option to be enabled. TotalView
uses this launch string when you start TotalView upon a file
when you have named a host within the File > New
Program dialog box or have used the –remote command
line option. You only want to disable single server launch
when it can’t work.

Command Enter the command that TotalView will use when it indepen-
dently launches tvdsvr. For information on this command and
its options, see “Using the Single-Process Server Launch Command”
on page 80.

FIGURE 59: File > Preferences: Server Launch Strings Page

CLI EQUIVALENT: dset TV::server_launch_enabled

CLI EQUIVALENT: dset TV::server_launch_string
Version 6.2 TotalView Users Guide 75

4
Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
Timeout After TotalView automatically launches tvdsvr, it waits 30 sec-
onds for tvdsvr to respond. If the connection isn’t made in
this time, TotalView times out. You can change the amount of
time by entering a value from 1 to 3600 seconds (1 hour).

You can also preset the timeout value by using a TotalView
preference. See the online Help for more information.

If you notice that TotalView fails to launch tvdsvr (as shown in
the xterm window from which you started the debugger) be-
fore the timeout expires, select Yes in the Question Dialog Box
that will appear.

Defaults If you make a mistake or decide you want to go back to
TotalView’s default settings, select the Defaults button.

Selecting Defaults also throws away any changes you made
using a CLI variable. TotalView doesn’t immediately change
settings after you click the Defaults button; instead, it waits
until you select the OK button.

Setting Bulk Launch Window Options

The fields in the File > Preferences’ Bulk Launch Page lets you change the bulk
launch command, disable bulk launch, and alter connection timeouts that
TotalView uses when it launches tvdsvr programs. Figure 60 shows this page.

Enable debug server bulk launch
If you select this check box, TotalView uses its bulk launch pro-
cedure when launching the TotalView Debugger Server (tvdsvr).

CLI EQUIVALENT: dset TV::server_launch_timeout
76 TotalView Users Guide Version 6.2

Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
By default, bulk launch is disabled; that is, TotalView uses its
single-server launch procedure.

Command If you have enabled bulk launch, TotalView will use this com-
mand to launch tvdsvr. For information on this command and
its options, see “Bulk Server Launch on an SGI MIPs Machine” on
page 81 and “Bulk Server Launch on an IBM RS/6000 AIX Ma-
chine” on page 83.

Temp File 1 Prototype
Temp File 2 Prototype

Both tab pages have three fields. These fields let you specify
the contents of temporary files that the bulk launch operation
will use. For information on these fields, see “TotalView Debugger

FIGURE 60: File > Preferences: Bulk Launch Page

CLI EQUIVALENT: dset TV::bulk_launch_enabled

CLI EQUIVALENT: dset TV::bulk_launch_string
Version 6.2 TotalView Users Guide 77

4
Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
Server (tvdsvr) Command Syntax” in the TOTALVIEW REFERENCE
GUIDE.

Connection Timeout (in seconds)
After TotalView launches tvdsvr processes, it waits 20 seconds
(the Base time) plus 10 seconds for each server that it will
launch for responses from successfully connected processes.
If connections are not made in this time, TotalView times out.

The Base timeout value can be from 1 to 3600 seconds (1
hour). The incremental Plus value is from 1 to 360 seconds (6
minutes). See the online Help for information on presetting
these values.

If you notice that TotalView fails to launch tvdsvr (as shown in
the xterm window from which you started the debugger) be-
fore the timeout expires, select Yes in the Question Dialog Box
that will appear.

Defaults If you make a mistake or decide you want to go back to
TotalView’s default settings, select the Defaults button.

Selecting Defaults also throws away any changes you made
using a CLI variable. TotalView doesn’t immediately change
settings after you click the Defaults button; instead, it waits
until you select the OK button.

CLI EQUIVALENT: dset TV::bulk_launch_tmpfile1_header_line
dset TV::bulk_launch_tmpfile1_host_lines
dset TV::bulk_launch_tmpfile1_trailer_line
dset TV::bulk_launch_tmpfile2_header_line
dset TV::bulk_launch_tmpfile2_host_lines
dset TV::bulk_launch_tmpefile2_trailer_line

CLI EQUIVALENT: dset TV::bulk_launch_base_timeout
dset TV::bulk_incr_timeout
78 TotalView Users Guide Version 6.2

Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
Starting the Debugger Server Manually

If TotalView can’t automatically launch tvdsvr, you can start it manually. Unfortu-
nately, this method isn’t completely secure: other users can connect to your in-
stance of tvdsvr and begin using your UNIX UID.

NOTE If you specify hostname:portnumber when opening a remote process, TotalView will
not launch a debugger server.

Here is how you manually start tvdsvr:

1 Begin by insuring that both the bulk launch and single server launch or dis-
abled. To disable the bulk launch, select the Bulk Launch Tab within the File
> Preferences Dialog Box. (You can select this command from the Root
Window or the Process Window.) The dialog box shown in Figure 60 on
page 77 appears. Next, clear the Enable debug server bulk launch check box
within the Bulk Launch Tab to disable the autolaunch feature and then select
OK.

Similarly, select the Server Launch Tab and clear the Enable single debug server
launch button.

2 Log in to the remote machine and start tvdsvr:

tvdsvr –server

If you don’t (or can’t) use the default port number (4142), you will need to use
the –port or –search_port options. For details, refer to “TotalView Debugger Server
(tvdsvr) Command Syntax” in the TOTALVIEW REFERENCE GUIDE.

After printing out the port number and the assigned password, the server begins
listening for connections. Be sure to remember the password; you’ll need to en-
ter it in step 4.

NOTE Because the –server option is not secure, it must be explicitly enabled. (This is
usually done by your system administrator.) For details, see “–server” in the “TotalView
Command Syntax” chapter of the TotalView Reference Guide.

CLI EQUIVALENT: dset TV::bulk_launch_enabled

CLI EQUIVALENT: dset TV::server_launch_enabled
Version 6.2 TotalView Users Guide 79

4
Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
3 From the Root Window, select the File > New Program command. Type the
program’s name in the Executable field and the hostname:portnumber in the
Remote Host field and then select OK.

4 TotalView now tries to connect to tvdsvr.

When TotalView prompts you for the password, enter the password that tvdsvr
displayed in step 2.

Figure 61 on page 80 summarizes the steps used when you start tvdsvr manually.

Using the Single-Process Server Launch Command

Here is the default command string that TotalView uses when it automatically
launches the debugger server for a single process:

%C %R –n "tvdsvr –working_directory %D –callback %L \
–set_pw %P –verbosity %V"

where:

%C Expands to the name of the server launch command being
used. On most platforms, this is rsh. On HP machines, this
command is remsh. If the TVDSVRLAUNCHCMD environment
variable exists, TotalView uses its value instead of its platform-
specific default value.

CLI EQUIVALENT: dload executable –r hostname

FIGURE 61: Manual Launching of Debugger Server

Network

2

tvdsvr

1
TotalView

Remote
Executable

➊ Makes connection
➋ Listens
80 TotalView Users Guide Version 6.2

Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
%R Expands to the host name of the remote machine that you
specified in the File > New Program or dload commands.

–n Tells the remote shell to read standard input from /dev/null;
that is, the process will immediately receive an EOF (End-Of-
File) signal.

–working_directory %D
Makes %D the directory to which TotalView will be connected.
%D expands to the absolute path name of the directory.

Using this option assumes that the host machine and the tar-
get machine are mounting identical file systems. That is, the
path name of the directory to which TotalView is connected
must be identical on host and target machines.

After changing to this directory, the shell will invoke the tvdsvr
command.

You must make sure the tvdsvr directory is in your path on the
remote machine.

–callback %L Establishes a connection from tvdsvr to TotalView. %L ex-
pands to the host name and TCP/IP port number (hostname:port)
upon which TotalView is listening for connections from tvdsvr.

–set_pw %P Sets a 64-bit password. TotalView must supply this password
when tvdsvr establishes a connection with it. %P expands to
the password that TotalView automatically generates. For
more information on this password, see “TotalView Debugger
Server (tvdsvr) Command Syntax” in the TOTALVIEW REFERENCE
GUIDE.

–verbosity %V Sets the verbosity level of the TotalView Debugger Server. %V
expands to the current TotalView verbosity setting.

You can also use the %H option with this command. This option is discussed in
“Bulk Server Launch on an SGI MIPs Machine” on page 81.

For information on the complete syntax of the tvdsvr command, refer to “TotalView
Debugger Server (tvdsvr) Command Syntax” in the TOTALVIEW REFERENCE GUIDE.

Bulk Server Launch on an SGI MIPs Machine

On an SGI machine, the bulk server launch string is similar to the single-process
server launch and is:
Version 6.2 TotalView Users Guide 81

4
Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
array tvdsvr –working_directory %D –callback_host %H \
–callback_ports %L –set_pws %P –verbosity %V

where:

–working_directory %D
Makes %D the directory to which TotalView will be connected.
%D expands to this directory’s absolute path name.

TotalView assumes that the host machine and the target ma-
chine mount identical file systems. That is, the path name of
the directory to which TotalView is connected must be identi-
cal on both host and target machines.

After performing this operation, tvdsvr starts executing.

–callback_host %H
Names the host upon which TotalView makes this callback.
%H expands to the host name of the machine TotalView is
running on.

–callback_ports %L
Names the ports on the host machines that TotalView uses for
callbacks. %L expands to a comma-separated list of host
names and TCP/IP port numbers (hostname:port,hostname:port...).
TotalView on which TotalView is listening for connections on a
port from the instance of tvdsvr on the host.

–set_pws %P Sets 64-bit passwords. TotalView must supply these pass-
words when tvdsvr establishes the connection with it. %P ex-
pands to a comma-separated list of 64-bit passwords that
TotalView automatically generates. For more information, see
“TotalView Debugger Server (tvdsvr) Command Syntax” in the
TOTALVIEW REFERENCE GUIDE.

–verbosity %V Sets tvdsvr’s verbosity level. %V expands to the current
TotalView verbosity setting.

You must enable tvdsvr’s use of the array command by adding the following infor-
mation to the /usr/lib/array/arrayd.conf file:

#
Command that allow invocation of the TotalView Debugger
server when performing a Bulk Server Launch.
#

82 TotalView Users Guide Version 6.2

Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
command tvdsvr
invoke /opt/totalview/bin/tvdsvr %ALLARGS
user %USER
group %GROUP
project %PROJECT

This assumes that the location of tvdsvr is /opt/totalview/bin. For information on
the syntax of the tvdsvr command, refer to “TotalView Debugger Server (tvdsvr) Command
Syntax” in the TOTALVIEW REFERENCE GUIDE.

Bulk Server Launch on an IBM RS/6000 AIX Machine

On an IBM RS/6000 AIX machine, the bulk server launch string is:

%C %H –n “poe –pgmmodel mpmd –resd no –tasks_per_node 1
–procs %N –hostfile %t1 –cmdfile %t2”

where the options unique to this command are:

%N The number of servers that TotalView will launch.

%t1 A temporary file created by TotalView that contains a list of the
hosts tvdsvr will run on. This is the information you enter in
the Temp File 1 Prototype field in the Bulk Launch Page.

TotalView generates this information by expanding the %R
symbol. This is the information you enter in the Temp File 2
Prototype field in the Bulk Launch Page.

%t2 A file that contains the commands to start the tvdsvr pro-
cesses on each machine. TotalView creates these lines by ex-
panding the following template:

tvdsvr –working_directory %D \
–callback %L –set_pw %P –verbosity %V

Information on the options and expansion symbols is in the “TotalView Debugger
Server (tvdsvr) Syntax” chapter of the TOTALVIEW REFERENCE GUIDE.

Bulk Server Launch on an HP Alpha Machine

On an HP Alpha machine, the bulk server launch string is:

prun –T –1 tvdsvr –callback_host %H –callback_ports %L
-set_pws %P –verbosity %V –working_directory %D
Version 6.2 TotalView Users Guide 83

4
Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
Information on the options and expansion symbols is in the “TotalView Debugger
Server (tvdsvr) Syntax” chapter of the TOTALVIEW REFERENCE GUIDE.

Disabling Autolaunch

If after changing the autolaunch options, TotalView still can’t automatically start
tvdsvr, you must disable autolaunching and start tvdsvr manually. Here are two
ways to do this:

g Clear the Enable single debug server launch check box in the Launch Strings
Page of the File > Preferences Dialog Box.

g When you debug the remote process, as described in “Starting the TotalView Debug-
ger Server” on page 73, enter a host name and port number in the bottom section
of the File > New Program Dialog Box. This disables autolaunching for the cur-
rent connection.

NOTE If you disable autolaunching, you must start tvdsvr before you load a remote execut-
able or attach to a remote process.

Changing the Remote Shell Command

Some environments require that you create your own autolaunch command. You
might do this, for example, if your remote shell command doesn’t provide the secu-
rity that your site requires.

If you create your own autolaunch command, you must use the tvdsvr command’s
–callback and –set_pw arguments.

If you’re not sure whether rsh (or remsh on HP machines) works at your site, try
typing “rsh hostname” (or “remsh hostname”) from an xterm window, where hostname is
the name of the host upon which you want to invoke the remote process. If this
command prompts you for a password, you must add the host name of the host
machine to your .rhosts file on the target machine.

For example, you could use the following combination of the echo and telnet com-
mands:

CLI EQUIVALENT: dset TV::server_launch_enabled
84 TotalView Users Guide Version 6.2

Setting Up Remote Debugging Sessions

Starting the TotalView Debugger Server
echo %D %L %P %V; telnet %R

Once telnet establishes a connection to the remote host, you could use the cd and
tvdsvr commands directly, using the values of %D, %L, %P, and %V that were dis-
played by the echo command. For example:

cd directory
tvdsvr –callback hostname:portnumber –set_pw password

If your machine doesn’t have a command for invoking a remote process, TotalView
can’t autolaunch the tvdsvr and you must disable both single server and bulk server
launches.

For information on the rsh and remsh commands, refer to the manual page sup-
plied with your operating system.

Changing the Arguments

You can also change the command-line arguments passed to rsh (or whatever com-
mand you use to invoke the remote process).

For example, if the host machine doesn’t mount the same file systems as your tar-
get machine, the debugger server may need to use a different path to access the
executable being debugged. If this is the case, you could change %D to the direc-
tory used on the target machine.

If the remote executable reads from standard input, you cannot use the –n option
with your remote shell command because the remote executable will receive an
EOF immediately on standard input. If you omit –n, the remote executable reads
standard input from the xterm in which you started TotalView. This means that you
should invoke tvdsvr from another xterm window if your remote program reads
from standard input. Here’s an example:

%C %R "xterm –display hostname:0 –e tvdsvr –callback %L \
-working_directory %D –set_pw %P –verbosity %V"

Now, each time TotalView launches tvdsvr, a new xterm appears on your screen to
handle standard input and output for the remote program.
Version 6.2 TotalView Users Guide 85

4
Setting Up Remote Debugging Sessions

Debugging Over a Serial Line
Autolaunch Sequence

If you want to know more about autolaunch, here is the sequence of actions carried
out by you, TotalView, and tvdsvr:

1 With the File > New Program or dload commands, you specify the host name
of the machine on which you want to debug a remote process, as described
in “Starting the TotalView Debugger Server” on page 73.

2 TotalView begins listening for incoming connections.

3 TotalView launches the tvdsvr process with the server launch command.
(“Using the Single-Process Server Launch Command” on page 80 describes this
command.)

4 The tvdsvr process starts on the remote machine.

5 The tvdsvr process establishes a connection with TotalView.

Figure 62 on page 86 summarizes these actions.

Debugging Over a Serial Line

TotalView allows you to debug programs over a serial line as well as TCP/IP sockets.
However, if a network connection exists, you will probably want to use it because
performance will be much better.

FIGURE 62: Root Window Showing Process and Thread Status

Network

2

5

3

4
tvdsvr

TotalView

Remote
Executable

➋ Listens
➌ Invokes commands
➍ tvdsvr starts
➎ Makes connection
86 TotalView Users Guide Version 6.2

Setting Up Remote Debugging Sessions

Debugging Over a Serial Line
You will need to have two connections to the target machine: one for the console
and the other for TotalView. Do not try to use one serial line as TotalView cannot
share a serial line with the console.

Figure 63 on page 87 illustrates a TotalView debugging session using a serial line.
In this example, TotalView is communicating over a dedicated serial line with a
TotalView Debugger Server running on the target host. A VT100 terminal is con-
nected to the target host’s console line, allowing you to type commands on the tar-
get host.

Topics in this section are:

g “Starting the TotalView Debugger Server” on page 87

g “Starting TotalView on a Serial Line” on page 88

g “Using the New Program Window” on page 88

Starting the TotalView Debugger Server

To start a TotalView debugging session over a serial line from the command line,
you must first start the TotalView Debugger Server (tvdsvr).

Using the console connected to the target machine, start tvdsvr and enter the
name of the serial port device on the target machine. Here is the syntax of the
command you would use:

tvdsvr –serial device[:baud=num]

FIGURE 63: TotalView Debugging Session Over a Serial Line

Network

TotalView

tvdsvr

VT100
Remote

ExecutableConsole
Line

Serial Line
Version 6.2 TotalView Users Guide 87

4
Setting Up Remote Debugging Sessions

Debugging Over a Serial Line
where:

device The name of the serial line device.

num The serial line’s baud rate; if you omit the baud rate, TotalView
uses a default value of 38400.

For example:

tvdsvr –serial /dev/com1:baud=38400

After it starts, tvdsvr waits for TotalView to establish a connection.

Starting TotalView on a Serial Line

Start TotalView on the host machine and include the name of the serial line device.
The syntax of this command is:

totalview –serial device[:baud=num] filename

or

totalviewcli –serial device[:baud=num] filename

where:

device The name of the serial line device on the host machine.

num The serial line’s baud rate. If you omit the baud rate, TotalView
uses a default value of 38400.

filename The name of the executable file.

For example:

totalview –serial /dev/term/a test_pthreads

Using the New Program Window

Here is the procedure for starting a TotalView debugging session over a serial line
when you’re already in TotalView:

1 Start the TotalView Debugger Server. (This is discussed in “Starting the
TotalView Debugger Server” on page 87).

2 Select the File > New Program command. TotalView responds by displaying
the dialog box shown in Figure 64.
88 TotalView Users Guide Version 6.2

Setting Up Remote Debugging Sessions

Debugging Over a Serial Line
Type the name of the executable file in the Executable field.

Type the name of the serial line device in the Serial Line field.

3 Select OK.

FIGURE 64: File > New Program Dialog Box
Version 6.2 TotalView Users Guide 89

4
Setting Up Remote Debugging Sessions

Debugging Over a Serial Line
90 TotalView Users Guide Version 6.2

Version 6.2
Chapter 5
Setting Up Parallel Debugging
Sessions
This chapter explains how to set up TotalView parallel debugging sessions for applica-
tions that use the following parallel execution models.

The information in this chapter describes running many different environments on many
different architectures. While there is a lot of information in this chapter you do need,
you probably don’t need the information on many of the environments and architec-
tures. This means that you shouldn’t just read this chapter. Instead, go to this book’s
table of contents and decide what’s important to you.

This chapter discusses:

g “Debugging MPICH Applications” on page 92
g “Debugging HP Alpha MPI Applications” on page 96
g “Debugging HP MPI Applications” on page 97
g “Debugging IBM MPI (PE) Applications” on page 99
g “Debugging QSW RMS Applications” on page 103

g “Debugging SGI MPI Applications” on page 104
g “Debugging Sun MPI Applications” on page 105
g “Debugging OpenMP Applications” on page 113
g “Debugging PVM and DPVM Applications” on page 121
g “Debugging Shared Memory (SHMEM) Code” on page 128
g “Debugging UPC Programs” on page 129
g “Parallel Debugging Tips” on page 134

There are a few things that are of general interest:

g TotalView lets you decide which process you want it to attach. You will find infor-
mation in “Attaching to Processes” on page 134.

g If you’re using a messaging system, TotalView displays this information visually as
a message queue graph and textually in a message queue window.
TotalView Users Guide 91

5
Setting Up Parallel Debugging Sessions

Debugging MPICH Applications
g The end of this chapter has some hints on how you can approach debugging
parallel programs.

Debugging MPICH Applications

To debug Message Passing Interface/Chameleon Standard (MPICH) applications,
you must use MPICH version 1.2.3 or later on a homogenous collection of ma-
chines. If you need a copy of MPICH, you can obtain it at no cost from Argonne Na-
tional Laboratory at www.mcs.anl.gov/mpi. (You are strongly urged to use a later
version of MPICH. Information on versions that work with TotalView can be found in
the TOTALVIEW PLATFORMS document.)

The MPICH library should use the ch_p4, ch_p4mpd, ch_shmem, ch_lfshmem, or
ch_mpl devices. For networks of workstations, ch_p4 is the default. For shared-
memory SMP machines, use ch_shmem. On an IBM SP machine, use the ch_mpl
device. The MPICH source distribution includes all of these devices and you can
choose one when you configure and build MPICH.

NOTE When configuring MPICH, you must ensure that the MPICH library maintains all of the
information required by TotalView, which means that you must use the –-enable-debug op-
tion with the MPICH configure command. (Versions earlier than 1.2 used the –-debug op-
tion.) In addition, the TotalView Release Notes contains information on patching your MPICH
1.2.3 distribution.

Topics in this section are:

g “Starting TotalView on an MPICH Job” on page 92

g “Attaching to an MPICH Job” on page 94

g “MPICH P4 procgroup Files” on page 96

Starting TotalView on an MPICH Job

Before you can bring an MPICH job under TotalView’s control, both TotalView and
the TotalView server must be in your path. You can set this up in either a login or
shell startup script.

At Version 1.1.2, here’s the command line that starts a job under TotalView’s con-
trol:

mpirun [MPICH-arguments] –tv program [program-arguments]
92 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging MPICH Applications
For example:

mpirun –np 4 –tv sendrecv

The MPICH mpirun command obtains information from the TOTALVIEW environ-
ment variable and then uses this information when it starts the first process in the
parallel job.

At Version 1.2.4, this changes to:

mpirun –dbg=totalview [other_mpich-arguments] program [program-arguments]

For example:

mpirun –dbg=totalview –np 4 sendrecv

In this case, mpirun obtains the information it needs from the –dbg command-line
option.

NOTE In other contexts, setting this environment variable means that you can use different
versions of TotalView or pass command-line options to TotalView.

For example, here is the C shell command that sets the TOTALVIEW environment
variable so that mpirun passes the –no_stop_all option to TotalView:

setenv TOTALVIEW "totalview –no_stop_all"

TotalView begins by starting the first process of your job, the master process, under
its control. You can then set breakpoints and begin debugging your code.

On the IBM SP machine with the ch_mpl device, the mpirun command uses the
poe command to start an MPI job. While you still must use the MPICH mpirun (and
its –tv option) command to start an MPICH job, the way you start MPICH differs.
For details on using TotalView with poe, see “Starting TotalView on a PE Job” on page
100.

Starting TotalView using ch_p4mpd is similar to starting TotalView using poe on IBM
or other methods you might use on Sun and HP platforms. In general, you start
TotalView using the totalview command. Here’s the syntax;
Version 6.2 TotalView Users Guide 93

5
Setting Up Parallel Debugging Sessions

Debugging MPICH Applications
totalview mpirun [totalview_arguments] \
–a [mpich-arguments] program [program-arguments]

As your program executes, TotalView automatically acquires the processes that are
part of your parallel job as your program creates them. Before TotalView begins to
acquire them, it asks if you want to stop the spawned processes. If your answer is
Yes, you can stop processes as they are initialized. This lets you check their states
or set breakpoints that are unique to the process. TotalView automatically copies
breakpoints from the master process to the slave processes as it acquires them.
Consequently, you don’t have to stop them just to set these breakpoints.

If you’re using the GUI, TotalView updates the Root Window’s Attached Page to
show these newly acquired processes. For more information, see “Attaching to Pro-
cesses” on page 134.

Attaching to an MPICH Job

TotalView allows you to attach to an MPICH application even if it was not started
under TotalView’s control. Here is the procedure:

1 Start TotalView.

2 The Root Window’s Unattached Page displays the processes that are not yet
owned.

3 Attach to the first MPICH process in your workstation cluster by diving into
it.

On an IBM SP with the ch_mpi device, attach to the poe process that started
your job. For details, see “Starting TotalView on a PE Job” on page 100. Figure 65 on
page 95 shows the Unattached window after some attaching has occurred.

Normally, the first MPICH process is the highest process with the correct image
name in the process list. Other instances of the same executable can be:

CLI EQUIVALENT: totalviewcli mpirun [totalview_arguments] \
–a [mpich-arguments] program [program-arguments]

CLI EQUIVALENT: dattach executable pid
94 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging MPICH Applications
➤ The p4 listener processes if MPICH was configured with ch_p4.

➤ Additional slave processes if MPICH was configured with ch_shmem or
ch_lfshmem.

➤ Additional slave processes if MPICH was configured with ch_p4 and have a
machine file that places multiple processes on the same machine.

4 After you attach to your program’s processes, TotalView asks if you also wish
to attach to slave MPICH processes. If you do, press Return or choose Yes. If
you do not, select No.

If you choose Yes, TotalView starts the server processes and acquires all MPICH
processes.

As an alternative, you can use the Group > Attach Subsets command to pre-
define what TotalView should do. For more information, see “Attaching to Processes”
on page 134.

In some situations, the processes you expect to see may not exist (for example,
they may have crashed or exited). TotalView acquires all the processes it can and
then warns you if it could not attach to some of them. If you attempt to dive into a
process that no longer exists (for example, using a message queue display),
TotalView tells you that the process no longer exists.

FIGURE 65: Root Window: Unattached Page
Version 6.2 TotalView Users Guide 95

5
Setting Up Parallel Debugging Sessions

Debugging HP Alpha MPI Applications
MPICH P4 procgroup Files

If you’re using MPICH with a P4 procgroup file (by using the –p4pg option), you
must use the same absolute path name in your procgroup file and on the mpirun
command line. For example, if your procgroup file contains a different path name
than that used in the mpirun command, even though this name resolves to the
same executable, TotalView treats it as different executable, which causes debug-
ging problems.

The following example uses the same absolute path name on TotalView’s command
line and in the procgroup file:

% cat p4group
local 1 /users/smith/mympichexe
bigiron 2 /users/smith/mympichexe
% mpirun –p4pg p4group –tv /users/smith/mympichexe

In this example, TotalView:

1 Reads the symbols from mympichexe only once.

2 Places MPICH processes in the same TotalView share group.

3 Names the processes mypichexe.0, mympichexe.1, mympichexe.2, and
mympichexe.3.

If TotalView assigns names such as mympichexe<mympichexe>.0, a problem
occurred and you should compare the contents of your procgroup file and mpirun
command line.

Debugging HP Alpha MPI Applications

You can debug HP Alpha MPI applications on the HP Alpha platform. To use
TotalView with HP Alpha MPI, you must use HP Alpha MPI version 1.7 or later.

Starting TotalView on a HP Alpha MPI Job

HP Alpha MPI programs are most often started with the dmpirun command. You
would use very similar command when starting an MPI program under TotalView’s
control:

{ totalview | totalviewcli } dmpirun –a dmpirun-command-line
96 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging HP MPI Applications
This invokes TotalView and tells it to show you the code for the main program in
dmpirun. Since you’re not usually interested in debugging this code, you can use
the Process > Go command to let the program run.

The dmpirun command runs and starts all MPI processes. TotalView will also ac-
quire them and ask if you want to stop them.

NOTE Problems can occur if you rerun HP Alpha MPI programs that are under TotalView
control due to resource allocation issues within HP Alpha MPI. Consult the HP Alpha MPI man-
uals and release notes for information on using mpiclean to clean up the MPI system state.

Attaching to a HP Alpha MPI Job

To attach to a running HP Alpha MPI job, attach to the dmpirun process that
started the job. The procedure for attaching to a dmpirun process is the same as
the procedure for attaching to other processes. For details, see “Attaching to Pro-
cesses” on page 49. You can also use the Group > Attach Subset command with is
discussed in “Attaching to Processes” on page 134.

After you attach to the dmpirun process, TotalView asks if you also wish to attach
to slave MPICH processes. If you do, press Return or choose Yes. If you do not, se-
lect No.

If you choose Yes, TotalView starts the server processes and acquires all MPICH
processes.

Debugging HP MPI Applications

You can debug HP MPI applications on a PA-RISC 1.1 or 2.0 processor. To use
TotalView with HP MPI, you must use HP MPI versions 1.6 or 1.7.

Starting TotalView on an HP MPI Job

TotalView lets you start an MPI program in three ways:

CLI EQUIVALENT: dfocus p dgo
Version 6.2 TotalView Users Guide 97

5
Setting Up Parallel Debugging Sessions

Debugging HP MPI Applications
{ totalview | totalviewcli } program –a mpi-arguments
This command tells TotalView to start the MPI process.
TotalView will then show you the machine code for the HP MPI
mpirun executable.

mpirun mpi-arguments –tv –f startup_file
This command tells MPI that it should start TotalView and then
start the MPI processes as they are defined within the
startup_file script. This file names the processes that MPICH will
start. Typically, this file has contents that are similar to:

-h localhost –np 1 sendrecv
-h localhost –np 1 sendrecva

In this example, sendrecv and sendrecva are two different exe-
cutable programs.

Your HP MPI documentation describes the contents of this
startup file.

mpirun mpi-arguments –tv program
This command tells MPI that it should start TotalView.

Just before mpirun starts the MPI processes, TotalView acquires them and asks if
you want to stop the processes before they start executing. If your answer is yes,
TotalView halts them before they enter the main() routine. You can then create
breakpoints.

Attaching to an HP MPI Job

To attach to a running HP MPI job, attach to the HP MPI mpirun process that
started the job. The procedure for attaching to an mpirun process is the same as
the procedure for attaching to any other process. For details, see “Attaching to Pro-
cesses” on page 49.

After TotalView attaches to the HP MPI mpirun process, it displays the same dialog
as it does with MPICH. (See step 4 on page 95 of “Attaching to an MPICH Job” on
page 94.)

CLI EQUIVALENT: dfocus p dgo
98 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging IBM MPI (PE) Applications
Debugging IBM MPI (PE) Applications

You can debug IBM MPI Parallel Environment (PE) applications on the IBM RS/6000
and SP platforms.

To take advantage of TotalView’s ability to automatically acquire processes, you
must be running release 3,1 or later of the Parallel Environment for AIX.

See “Displaying the Message Queue Graph” on page 107 for message queue display in-
formation.

Topics in this section are:

g “Preparing to Debug a PE Application” on page 99

g “Starting TotalView on a PE Job” on page 100

g “Setting Breakpoints” on page 101

g “Starting Parallel Tasks” on page 101

g “Attaching to a PE Job” on page 102

Preparing to Debug a PE Application

The following sections describe what you must do before TotalView can display a PE
application.

Using Switch-Based Communication
If you’re using switch-based communications (either “IP over the switch” or “user
space”) on an SP machine, you must configure your PE debugging session so that
TotalView can use “IP over the switch” for communicating with the TotalView De-
bugger Server (tvdsvr). Do this by setting adapter_use to shared and cpu_use to
multiple, as follows:

g If you’re using a PE host file, add shared multiple after all host names or pool
IDs in the host file.

g Always use the following arguments on the poe command line:
–adapter_use shared –cpu_use multiple

If you don’t want to set these arguments in the poe command line, set the follow-
ing environment variables before starting poe:

setenv MP_ADAPTER_USE shared
setenv MP_CPU_USE multiple
Version 6.2 TotalView Users Guide 99

5
Setting Up Parallel Debugging Sessions

Debugging IBM MPI (PE) Applications
When using “IP over the switch,” the default is usually shared adapter use and
multiple cpu use; to be safe, set them explicitly by using one of these techniques.

When you’re using switch-based communications, you must run TotalView on one
of the SP or SP2 nodes. Since TotalView will be using “IP over the switch” in this
case, you cannot run TotalView on an RS/6000 workstation.

Performing Remote Logins
You must be able to perform a remote login using the rsh command. You will also
need to enable remote logins by adding the host name of the remote node to the
/etc/hosts.equiv file or to your .rhosts file.

When the program is using switch-based communications, TotalView tries to start
the TotalView Debugger Server by using the rsh command with the switch host
name of the node.

Setting Timeouts
If you receive communications timeouts, you can set the value of the MP_TIMEOUT
environment variable. For example:

setenv MP_TIMEOUT 1200

If this variable isn’t set, TotalView uses a timeout value of 600 seconds.

Starting TotalView on a PE Job

Here is the syntax for running Parallel Environment (PE) programs from the com-
mand line:

program [arguments] [pe_arguments]

You can use the poe command to run programs:

poe program [arguments] [pe_arguments]

If, however, you start TotalView on a PE application, you must start poe as
TotalView’s target. The syntax for this is:

{ totalview | totalviewcli } poe –a program[arguments][PE_arguments]

For example:

totalview poe –a sendrecv 500 –rmpool 1
100 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging IBM MPI (PE) Applications
Setting Breakpoints

After TotalView is running, you can start the poe process; this process will then start
the program’s parallel processes with the Process > Go command.

TotalView responds by displaying a dialog box—in the CLI, it prints a question—
that asks if you want to stop the parallel tasks.

If you want to set breakpoints in your code before they begin executing, answer
Yes. TotalView initially stops the parallel tasks, which also allows you to set break-
points. You can set breakpoints and control parallel tasks in the same way as any
process controlled by TotalView.

If you have already set and saved breakpoints with the Action Points > Save All
command and want to reload the file, answer No. After TotalView loads these saved
breakpoints, the parallel tasks begin executing.

Starting Parallel Tasks

After you set breakpoints, you can start all of the parallel tasks with the Process
Window’s Group > Go command.

NOTE No parallel tasks will reach the first line of code in your main routine until all parallel
tasks start.

You should be very cautious in placing breakpoints at or before a line that calls
MPI_Init() or MPL_Init() because timeouts can occur while your program is being
initialized. Once you allow the parallel processes to proceed into the MPI_Init() or
MPL_Init() call, you should allow all of the parallel processes to proceed through it

CLI EQUIVALENT: dfocus p dgo

CLI EQUIVALENT: dactions –save filename
dactions –load filename

CLI EQUIVALENT: dfocus G dgo
Abbreviation: G
Version 6.2 TotalView Users Guide 101

5
Setting Up Parallel Debugging Sessions

Debugging IBM MPI (PE) Applications
within a short time. For more information on this, see “Avoid unwanted timeouts” on
page 140.

Attaching to a PE Job

To take full advantage of TotalView’s poe-specific automation, you need to attach
to poe itself, and let TotalView automatically acquire the poe processes on its vari-
ous nodes. This set of acquired processes will include the processes you want to
debug.

Attaching from a Node Running poe
Here’s the procedure for attaching TotalView to poe from the node running poe.

1 Start TotalView in the directory of the debug target.

If you can’t start TotalView in the debug target directory, you can start TotalView
by editing the TotalView Debugger Server (tvdsvr) command line before attaching
to poe. See “Using the Single-Process Server Launch Command” on page 80.

2 In the Root Window’s Unattached Page, find the poe process list, and attach
to it by diving into it. When necessary, TotalView launches TotalView Debug-
ger Servers. TotalView will also update the Root Window’s Attached Page and
open a Process Window for the poe process.

3 Locate the process you want to debug and dive on it. TotalView responds by
opening a Process Window for it.

If your source code files are not displayed in the Source Pane, you may not have
told TotalView where these files reside. You can fix this by invoking the File >
Search Path command to add directories to your search path.

Attaching from a Node Not Running poe
The procedure for attaching TotalView to poe from a node not running poe is es-
sentially the same as the procedure for attaching from a node running poe. Since
you did not run TotalView from the node running poe (the startup node), you won’t

CLI EQUIVALENT: dattach poe pid
102 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging QSW RMS Applications
be able to see poe on the process list in your Root Window’s Attached Page and
you won’t be able to start it by diving into it.

The procedure for placing poe within this list is:

1 Connect TotalView to the startup node. For details, see “Starting the TotalView
Debugger Server” on page 73 and “Attaching to Processes” on page 49.

2 Select the Root Window’s Unattached Page, and then invoke the Window >
Update command.

3 Look for the process named poe and continue as if attaching from a node
running poe.

Debugging QSW RMS Applications

TotalView supports automatic process acquisition on AlphaServer SC systems and
32-bit Red Hat Linux systems that use Quadrics’s RMS resource management sys-
tem with the QSW switch technology.

NOTE Message queue display is only supported if you are running version 1, patch 2 or
later, of AlphaServer SC.

Starting TotalView on an RMS Job

To start a parallel job under TotalView’s control, use TotalView as though you were
debugging prun:

{ totalview | totalviewcli } prun –a prun-command-line

TotalView starts up and shows you the machine code for RMS prun. Since you’re
not usually interested in debugging this code, use the Process > Go command to
let the program run.

The RMS prun command executes and starts all MPI processes. After TotalView ac-
quires them, it asks if you want to stop them at startup. If you answer yes,

CLI EQUIVALENT: dattach -r hostname poe poe-pid

CLI EQUIVALENT: dfocus p dgo
Version 6.2 TotalView Users Guide 103

5
Setting Up Parallel Debugging Sessions

Debugging SGI MPI Applications
TotalView halts them before they enter the main program. You can then create
breakpoints.

Attaching to an RMS Job

To attach to a running RMS job, attach to the RMS prun process that started the
job.

You attach to the prun processes the same way you attach to other processes. For
details on attaching to processes, see “Attaching to Processes” on page 49.

After you attach to the RMS prun process, TotalView asks if you also wish to attach
to slave MPICH processes. If you do, press Return or choose Yes. If you do not, se-
lect No.

If you choose Yes, TotalView starts the server processes and acquires all MPICH
processes.

As an alternative, you can use the Group > Attach Subsets command to predefine
what TotalView should do. For more information, see “Attaching to Processes” on page
134.

Debugging SGI MPI Applications

TotalView can acquire processes started by SGI MPI, which is part of the Message
Passing Toolkit (MPT) 1.3 and 1.4 packages.

Message queue display is supported by release 1.3 and 1.4 of the Message Passing
Toolkit. See “Displaying the Message Queue Graph” on page 107 for message queue
display.

Starting TotalView on a SGI MPI Job

SGI MPI programs are normally started by using the mpirun command. You would
use a similar command to start an MPI program under TotalView’s control:

{ totalview | totalviewcli } mpirun –a mpirun-command-line
104 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging Sun MPI Applications
This invokes TotalView and tells it to show you the machine code for mpirun. Since
you’re not usually interested in debugging this code, use the Process > Go com-
mand to let the program run.

The SGI MPI mpirun command runs and starts all MPI processes. After TotalView
acquires them, it asks if you want to stop them at startup. If you answer Yes,
TotalView halts them before they enter the main program. You can then create
breakpoints.

If you set a verbosity level that allows informational messages, TotalView also prints
a message showing the name of the array and the value of the array services handle
(ash) to which it is attaching.

Attaching to an SGI MPI Job

To attach to a running SGI MPI job, attach to the SGI MPI mpirun process that
started the job. The procedure for attaching to an mpirun process is the same as
the procedure for attaching to any other process. For details, see “Attaching to Pro-
cesses” on page 49.

After you attach to the mpirun process, TotalView asks if you also wish to attach to
slave MPICH processes. If you do, press Return or choose Yes. If you do not, select
No.

If you choose Yes, TotalView starts the server processes and acquires all MPICH
processes.

As an alternative, you can use the Group > Attach Subsets command to predefine
what TotalView should do. For more information, see “Attaching to Processes” on page
134.

Debugging Sun MPI Applications

TotalView can debug a Sun MPI program and can display Sun MPI message queues.
This section describes how to perform job startup and job attach.

CLI EQUIVALENT: dfocus p dgo
Version 6.2 TotalView Users Guide 105

5
Setting Up Parallel Debugging Sessions

Debugging Sun MPI Applications
1 Type the following command

totalview mprun [totalview_args] –a [mpi_args]

For example:

totalview mprun –g blue –a –np 4 /usr/bin/mpi/conn.x

When the TotalView Process Window appears, select the Go button.

TotalView may display a dialog box that says:

Process mprun is a parallel job. Do you want to stop the
job now?

2 If you had compiled using the –g option, clicking Yes tells TotalView to open
a Process Window showing your source. All processes will be halted.

Attaching to a Sun MPI Job

This section describes how to attach to an already running mprun job.

1 Find the host name and process identifier (PID) of the mprun job by typing
mpps –b. For more information, refer to the mpps(1M) manuel page.

Here is sample output from this command:

JOBNAME MPRUN_PID MPRUN_HOST
cre.99 12345 hpc-u2-9
cre.100 12601 hpc-u2-8

2 After selecting File > New Program, type mprun in the Executable field and
type the PID in the Process ID field.

CLI EQUIVALENT: totalviewcli mprun [totalview_args] –a [mpi_args]

CLI EQUIVALENT: dfocus p dgo

CLI EQUIVALENT: dattach mprun mprun-pid
For example:

dattach mprun 12601
106 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Displaying the Message Queue Graph
3 If TotalView is running on a different node than the mprun job, enter the host
name in the Remote Host field.

Displaying the Message Queue Graph

TotalView can graphically display your MPI program’s message queue state. If you
select the Process Window’s Tools > Message Queue Graph command, TotalView
displays a window with a large empty area. After you select the ranks to be moni-
tored, the kind of messages, and message states, TotalView updates this window to
show the current queue state. Figure 66 shows a sample window.

The numbers in the boxes indicate the MPI message tag number. Diving on a box
tells TotalView to open a Process Window for that process.

CLI EQUIVALENT: dattach –r host-name mprun mprun-pid

FIGURE 66: Tools > Message Queue Graph Window
Version 6.2 TotalView Users Guide 107

5
Setting Up Parallel Debugging Sessions

Displaying the Message Queue Graph
The numbers next to the arrows indicate the number of messages that existed
when TotalView created the graph. Diving on an arrow tells TotalView that it should
display its Tools > Message Queue Window, which will have detailed information
about the messages. A grey box indicates a process to which TotalView is not at-
tached.

The colors used to draw the lines and arrows have the following meaning:

g Green: sent messages

g Blue: receive messages

g Red: unexpected messages

This graph shows you the state of your program at a particular instant. Selecting
the Update button tells TotalView that it should update the display.

While you can use this window in many ways, here are some to consider:

g Pending messages often indicate that a process can’t keep up with the amount
of work it is expected to perform. These messages indicate places where you may
be able to improve your program’s efficiency.

g Unexpected messages can indicate that something is wrong with your program
because the receiving process doesn’t know how to process the message. The
red lines indicated unexpected messages.

g After a while, the shape of the graph tends to tell you something about how your
program is executing. If something doesn’t look right, you might want to deter-
mine why it looks wrong.

g You can change the shape of the graph by dragging either nodes or the arrows.
This is often useful when you’re comparing sets of nodes and their messages
with one another. TotalView doesn’t remember the places to which you have
dragged the nodes and arrows. This means that if you select the Display button
after you arrange the graph, your changes are lost.

Topics related to this one are:

g “Message Queue Display Overview” on page 109

g “Using Message Operations” on page 110

g “OpenMP Stack Parent Token Line” on page 120
108 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Displaying the Message Queue
Displaying the Message Queue

The Tools > Message Queue Dialog Box displays your MPI program’s message
queue state textually. This can be useful when you need to find out why a deadlock
occurred.

To use the message queue display feature, you must be using one of the following
versions of MPI:

g MPICH version 12.3 or later.

g HP Alpha MPI (DMPI) version 1.8, 1.9, and 1.96.

g HP HP-UX version 1.6 and 1.7.

g IBM MPI Parallel Environment (PE) version 3.1 or 3.2, but only programs using the
threaded IBM MPI libraries. MQD is not available with earlier releases, or with the
non-thread-safe version of the IBM MPI library. Therefore, to use TotalView MQD
with IBM MPI applications, you must use the mpcc_r, mpxlf_r, or mpxlf90_r
compilers to compile and link your code.

g For the SGI MPI TotalView message queue display, you must obtain the Message
Passing Toolkit (MPT) release 1.3 and 1.4. Check with SGI for availability.

Message Queue Display Overview

After an MPI process returns from the call to MPI_Init(), you can display the internal
state of the MPI library by selecting the Tools > Message Queue command. The in-
formation is shown in Figure 67 on page 110.

This window displays the state of the process’s MPI communicators. If user-visible
communicators are implemented as two internal communicator structures,
TotalView displays both of them. One will be used for point-to-point operations
and the other for collective operations.

NOTE You cannot edit any of the fields in the Message Queue Window.

The contents of the Message Queue Window are only valid when a process is
stopped.
Version 6.2 TotalView Users Guide 109

5
Setting Up Parallel Debugging Sessions

Displaying the Message Queue
Using Message Operations

For each communicator, TotalView displays a list of pending receive operations,
pending unexpected messages, and pending send operations. Each operation has
an index value displayed in brackets ([n]). The online Help for this window contains
a description of the fields that can be displayed.

Topics in this section are:

g “Diving on MPI Processes” on page 111

g “Diving on MPI Buffers” on page 111

g “Pending Receive Operations” on page 111

g “Unexpected Messages” on page 112

g “Pending Send Operations” on page 112

FIGURE 67: Message Queue Window
110 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Displaying the Message Queue
Diving on MPI Processes
To display more detail, you can dive into fields in the Message Queue Window.
When you dive into a process field, TotalView does one of the following:

g Raises its Process Window if it exists.

g Sets the focus to an existing Process Window on the requested process.

g If a Process Window doesn’t exist, TotalView creates a new one for the process.

Diving on MPI Buffers
When you dive into the buffer fields, TotalView opens a Variable Window. It also
guesses what the correct format for the data should be based on the buffer’s length
and the data’s alignment. If TotalView guesses incorrectly, you can edit the type
field in the Variable Window.

NOTE TotalView doesn’t use the MPI data type to set the buffer type.

Pending Receive Operations
TotalView displays each pending receive operation in the Pending receives list.
Figure 68 shows an example of an MPICH pending receive operation.

FIGURE 68: Message Queue Window Showing Pending Receive Operation

➊

➋
➌➍

➎

➊ Operation index
➋ One receive operation
➌ Diving here displays a Process Window
➍ Diving here displays a Variable Window

➍

Version 6.2 TotalView Users Guide 111

5
Setting Up Parallel Debugging Sessions

Displaying the Message Queue
NOTE TotalView displays all receive operations maintained by the IBM MPI library. You
should set the environment variable MP_EUIDEVELOP to the value DEBUG if you want
blocking operations to be visible; otherwise, the library only maintains non-blocking opera-
tions. For more details on the MP_EUIDEVELOP environment variable, consult the IBM Paral-
lel Environment Operations and Use manual.

Unexpected Messages
The Unexpected messages portion of the Message Queue Window shows informa-
tion for retrieved and enqueued messages that are not yet matched with a receive
operation.

Some MPI libraries such as MPICH only retrieve already received messages as a side
effect of calls to functions such as MPI_Recv() or MPI_Iprobe(). (In other words,
while some versions of MPI may know about the message, the message may not yet
be in a queue.) This means that TotalView can’t list a message until after the desti-
nation process makes a call that retrieves it.

Pending Send Operations
TotalView displays each pending send operation in the Pending sends list.

MPICH does not normally keep information about pending send operations. How-
ever, when you configure MPICH, you can tell it to maintain a list of them. Start your
program under TotalView’s control and use mpirun –ksq, or –KeepSendQueue to
see these messages.

Depending on the device for which MPICH was configured, blocking send opera-
tions may or may not be visible. However, if TotalView doesn’t display them, you
can see that these operations occurred because the call is in the stack backtrace.

If you attach to an MPI program that isn’t maintaining send queue information,
TotalView displays the following message:

Pending sends : no information available
112 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
MPI Debugging Troubleshooting

If you can’t successfully start TotalView on MPI programs, check the following:

g Can you successfully start MPICH programs without TotalView?
The MPICH code contains some useful scripts that let you verify that you can
start remote processes on all of the machines in your machines file. (See
tstmachines in mpich/util.)

g You won’t get a message queue display if you get the following warning:
The symbols and types in the MPICH library used by
TotalView to extract the message queues are not as
expected in the image <your image name>. This is
probably an MPICH version or configuration problem.

You need to check that you are using MPICH Version 1.1.0 or later and that you
have configured it with the –debug option. (You can check this by looking in the
config.status file at the root of the MPICH directory tree).

g Does the TotalView Debugger Server (tvdsvr) fail to start?
tvdsvr must be in your PATH when you log in. Remember that TotalView uses rsh
to start the server, and that this command doesn’t pass your current environ-
ment to remotely started processes.

g Make sure you have the correct MPI version and have applied all required
patches. See the TOTALVIEW RELEASE NOTES for up-to-date information.

g Under some circumstances, MPICH kills TotalView with the SIGINT signal. You can
see this behavior when you use the Group > Delete command to restart an
MPICH job.

If TotalView exits and terminates abnormally with a Killed message, try setting
the TV::ignore_control_c variable to true.

Debugging OpenMP Applications

TotalView supports many OpenMP C and Fortran compilers. Supported compilers
and architectures are listed in the TOTALVIEW PLATFORMS document and on our Web
site.

CLI EQUIVALENT: dfocus g ddelete
Version 6.2 TotalView Users Guide 113

5
Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
Here are some of the features that TotalView supports:

g Source-level debugging of the original OpenMP code.

g The ability to plant breakpoints throughout the OpenMP code, including lines
that are executed in parallel.

g Visibility of OpenMP worker threads.

g Access to SHARED and PRIVATE variables in OpenMP PARALLEL code.

g A stack-back link token in worker threads’ stacks so that you can find their mas-
ter stack.

g Access to OMP THREADPRIVATE data in code compiled by the IBM and Guide,
SGI IRIX, and HP Alpha compilers.

The code examples used in this section are included in the TotalView distribution in
the examples/omp_simplef file.

NOTE On the SGI IRIX platform, you must use the MIPSpro 7.3 compiler or later to debug
OpenMP.

Topics in this section are:

g “Debugging OpenMP Programs” on page 114

g “OpenMP Private and Shared Variables” on page 117

g “OpenMP THREADPRIVATE Common Blocks” on page 118

g “OpenMP Stack Parent Token Line” on page 120

Debugging OpenMP Programs

Debugging OpenMP code is very similar to debugging multithreaded code, differing
only in that the OpenMP compiler makes the following special code transforma-
tions:

g The most visible transformation is outlining. The compiler pulls the body of a par-
allel region out of the original routine and places it into an outlined routine. In
some cases, the compiler will generate multiple outlined routines from a single
parallel region. This allows multiple threads to execute the parallel region.
The outlined routine’s name is based on the original routine’s name.

g The compiler inserts calls to the OpenMP runtime library.
114 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
g The compiler splits variables between the original routine and the outlined rou-
tine. Normally, shared variables are maintained in the master thread’s original
routine, and private variables are maintained in the outlined routine.

g The master thread creates threads to share the workload. As the master thread
begins to execute a parallel region in the OpenMP code, it creates the worker
threads, dispatches them to the outlined routine, and then calls the outlined
routine itself.

TotalView OpenMP Features
TotalView makes these transformations visible in the debugging session. Here are
some things you should know:

g The compiler may generate multiple outlined routines from a single parallel re-
gion. This means that a single line of source code can generate multiple blocks of
machine code inside different functions.

g You can’t single step into or out of a parallel region. Instead, set a breakpoint in-
side the parallel region and allow the process to run to it. Once inside a parallel
region, you can single step within it.

g OpenMP programs are multithreaded programs, so the rules for debugging multi-
threaded programs apply.

Figure 69 on page 116 shows a sample OpenMP debugging session.

OpenMP Platform Differences
The following list contains information on platform differences:

g On HP Alpha Tru64 UNIX and on the Guide compilers, the OpenMP threads are
implemented by the compiler as pthreads, and on SGI IRIX as sprocs. TotalView
shows the threads’ logical and/or system thread ID, not the OpenMP thread
number.

g The OpenMP master thread has logical thread ID number 1. The OpenMP worker
threads have a logical thread ID number greater than 1.

g In HP Alpha Tru64 UNIX, the system manager threads have a negative thread ID;
as they do not take part in your OpenMP program, you should never manipulate
them.

g SGI OpenMP uses the SIGTERM signal to terminate threads. Because TotalView
stops a process when the process receives a SIGTERM, the OpenMP process
Version 6.2 TotalView Users Guide 115

5
Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
doesn’t terminate. If you want the OpenMP process to terminate instead of stop,
set the default action for the SIGTERM signal to Resend.

g When you stop the OpenMP master thread in a PARALLEL DO outlined routine,
the stack backtrace shows the following call sequence:

FIGURE 69: Sample OpenMP Debugging Session

➋

➍

➌

➎

➊

➊ OpenMP master thread ➎ “Original” routine name
➋ OpenMP worker threads ➏ Stack parent token (select or
➌ Manager threads dive to view master)

(don’t touch) ➐ “Outlined” routine name
➍ Slave Thread Window

➏

➐

116 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
➤ The outlined routine called from.

➤ The OpenMP runtime library called from.

➤ The original routine (containing the parallel region).

g When you stop the OpenMP worker threads in a PARALLEL DO outlined routine,
the stack backtrace shows the following call sequence:

➤ Outlined routine called from the special stack parent token line.

➤ The OpenMP runtime library called from.

g Select or dive on the stack parent token line to view the original routine’s stack
frame in the OpenMP master thread.

OpenMP Private and Shared Variables

TotalView allows you to view both OpenMP private and shared variables.

The compiler maintains OpenMP private variables in the outlined routine, and
treats them like local variables. See “Displaying Local Variables and Registers” on page
284. In contrast, the compiler maintains OpenMP shared variables in the master
thread’s original routine stack frame. However, Guide compilers pass shared vari-
ables to the outlined routine as parameter references.

TotalView lets you display shared variables through a Process Window focused on
the OpenMP master thread or through one of the OpenMP worker threads, as
follows:

1 Select the outlined routine in the Stack Trace Pane; or select the original rou-
tine stack frame in the OpenMP master thread.

2 Dive on the variable name, or select the View > Lookup Variable command.
When prompted, enter the variable name.

TotalView will open a Variable Window displaying the value of the OpenMP shared
variable, as shown in Figure 70 on page 118.

Shared variables are stored on the OpenMP master thread’s stack. When displaying
shared variables in OpenMP worker threads, TotalView uses the stack context of the

CLI EQUIVALENT: dprint
You will need to set your focus to the OpenMP master
thread first.
Version 6.2 TotalView Users Guide 117

5
Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
OpenMP master thread to find the shared variable. TotalView uses the OpenMP
master thread’s context when displaying the shared variable in a Variable Window.

You can also view OpenMP shared variables in the Stack Frame Pane by selecting
the original routine stack frame in the OpenMP master thread, or by selecting the
stack parent token line in the Stack Trace Pane of OpenMP worker threads, as
shown in Figure 70.

OpenMP THREADPRIVATE Common Blocks

The HP Alpha Tru64 UNIX OpenMP and SGI IRIX compilers implement OpenMP
THREADPRIVATE common blocks by using the thread local storage system facility.
This facility stores a variable declared in OpenMP THREADPRIVATE common blocks
at different memory locations in each thread in an OpenMP process. This allows
the variable to have different values in each thread. In contrast, the IBM and Guide
compilers use the pthread key facility.

FIGURE 70: OpenMP Shared Variable

➊ OpenMP shared variables have master thread’s context
➋ Original routine’s stack frame selected
➌ Stack Frame Pane includes shared variables

➋

➌
➊

118 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
On SGI, the THREADPRIVATE variables are mapped to the same virtual address.
However, they have different physical addresses.

Here’s how you can view a variable in an OpenMP THREADPRIVATE common block,
or the OpenMP THREADPRIVATE common block itself:

1 In the Threads Pane of the Process Window, select the thread containing the
private copy of the variable or common block you would like to view.

2 In the Stack Trace Pane of the Process Window, select the stack frame that
will allow you to access the OpenMP THREADPRIVATE common block vari-
able. You can select either the outlined routine or the original routine for an
OpenMP master thread. You must, however, select the outlined routine for
an OpenMP worker thread.

3 From the Process Window, dive on the variable name or common block
name. Or select the View > Lookup Variable command. When prompted,
enter the name of the variable or common block. You may need to append
an underscore (_) after the common block name.

TotalView opens a Variable Window displaying the value of the variable or com-
mon block for the selected thread.

See “Displaying Variables” on page 281 for more information on displaying vari-
ables.

4 To view OpenMP THREADPRIVATE common blocks or variables across all
threads, you can use the Variable Window’s View > Laminate Threads com-
mand. See “Displaying a Variable in All Processes or Threads” on page 333.

Figure 71 on page 120 shows Variable Windows displaying OpenMP
THREADPRIVATE common blocks. Because the Variable Window has the same
thread context as the Process Window from which it was created, the title bar pat-
terns for the same thread match. In the laminated views, the values of the common
block across all threads are displayed.

CLI EQUIVALENT: dprint
Version 6.2 TotalView Users Guide 119

5
Setting Up Parallel Debugging Sessions

Debugging OpenMP Applications
OpenMP Stack Parent Token Line

TotalView inserts a special stack parent token line in the Stack Trace Pane of
OpenMP worker threads when they are stopped in an outlined routine.

When you select or dive on the stack parent token line, the Process Window
switches to the OpenMP master thread, allowing you to see the stack context of
the OpenMP worker thread’s routine. This context includes the OpenMP
shared variables. (See Figure 72.)

FIGURE 71: OpenMP THREADPRIVATE Common Block Variables

FIGURE 72: OpenMP Stack Parent Token Line
120 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
Debugging PVM and DPVM Applications

You can debug applications that use the Parallel Virtual Machine (PVM) library or the
HP Alpha Tru64 UNIX Parallel Virtual Machine (DPVM) library with TotalView on
some platforms. TotalView supports ORNL PVM Version 3.4.4 on all platforms and
DPVM Version 1.9 or later on the HP Alpha platform.

NOTE See the TotalView Platforms document for the most up-to-date information regarding
your PVM or DPVM software.

For tips on debugging parallel applications, see “Parallel Debugging Tips” on page
134.

Topics in this section are:

g “Supporting Multiple Sessions” on page 121

g “Setting Up ORNL PVM Debugging” on page 122

g “Starting an ORNL PVM Session” on page 122

g “Starting a DPVM Session” on page 123

g “Automatically Acquiring PVM/DPVM Processes” on page 124

g “Attaching to PVM/DPVM Tasks” on page 126

Supporting Multiple Sessions

When you debug a PVM or DPVM application, TotalView becomes a PVM tasker. This
lets it establish a debugging context for your session. You can run:

g One TotalView PVM or DPVM debugging session for a user and for an architec-
ture; that is, different users can’t interfere with each other on the same machine
or same machine architecture.
One user can start TotalView to debug the same PVM or DPVM application on dif-
ferent machine architectures. However, a single user can’t have multiple in-
stances of TotalView debugging the same PVM or DPVM session on a single
machine architecture.

For example, suppose you start a PVM session on Sun 5 and HP Alpha machines.
You must start two TotalView sessions: one on the Sun 5 machine to debug the
Sun 5 portion of the PVM session, and one on the HP Alpha machine to debug
the HP Alpha portion of the PVM session. These two TotalView sessions are sepa-
rate and don’t interfere with one another.
Version 6.2 TotalView Users Guide 121

5
Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
g Similarly, in one TotalView session, you can run either a PVM application or a
DPVM application, but not both. However, if you run TotalView on a HP Alpha,
you can have two TotalView sessions: one debugging PVM and one debugging
DPVM.

Setting Up ORNL PVM Debugging

To enable PVM, create a symbolic link from the PVM bin directory (which is
$HOME/pvm3/bin/$PVM_ARCH/tvdsvr) to the TotalView Debugger Server (tvdsvr).
With this link in place, TotalView invokes pvm_spawn() to spawn the tvdsvr tasks.

For example, if tvdsvr is installed in the /opt/totalview/bin directory, enter the fol-
lowing command:

ln -s /opt/totalview/bin/tvdsvr \
$HOME/pvm3/bin/$PVM_ARCH/tvdsvr

If the symbolic link doesn’t exist, TotalView can’t spawn tvdsvr. When TotalView
can’t spawn tvdsvr, it displays the following error:

Error spawning TotalView Debugger Server: No such file

Starting an ORNL PVM Session

Start the ORNL PVM daemon process before you start TotalView. See the ORNL
PVM documentation for information about the PVM daemon process and console
program. The following steps outline this procedure.

1 Use the pvm command to start a PVM console session—this command
starts the PVM daemon. If PVM isn’t running when you start TotalView (with
PVM support enabled), TotalView exits with the following message:

Fatal error: Error enrolling as PVM task: pvm error

2 If your application uses groups, start the pvmgs process before starting
TotalView. PVM groups are unrelated to TotalView process groups. For infor-
mation about TotalView process groups, refer to “Examining Groups” on page
223.

3 You can use the –pvm command-line option to the totalview command. As
an alternative, you can set the TV::pvm variable in a startup file. The com-
mand-line options override the a CLI variable. For more information, refer to
“TotalView Command Syntax” in the TOTALVIEW REFERENCE GUIDE.
122 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
4 Set the TotalView directory search path to include the PVM directories. This
directory list must include those needed to find both executable and source
files. The directories you use will vary, but should always contain the current
directory and your home directory.

You can set the directory search path by setting the TV::search_path variable or
you can use the File > Search Directory command. Refer to “Setting Search Paths”
on page 59 for more information.

For example, to debug the PVM examples, you can place the following directories
in your search path:

$HOME
$PVM_ROOT/xep
$PVM_ROOT/xep/$PVM_ARCH
$PVM_ROOT/src
$PVM_ROOT/src/$PVM_ARCH
$PVM_ROOT/bin/$PVM_ARCH
$PVM_ROOT/examples
$PVM_ROOT/examples/$PVM_ARCH
$PVM_ROOT/gexamples
$PVM_ROOT/gexamples/$PVM_ARCH

5 Verify that the action taken by TotalView for the SIGTERM signal is appropri-
ate. (You can examine the current action by using the Process Window’s
File > Signals command. Refer to “Handling Signals” on page 56 for more
information.)

PVM uses the SIGTERM signal to terminate processes. Because TotalView stops a
process when the process receives a SIGTERM, the process is not terminated. If
you want the PVM process to terminate, set the action for the SIGTERM signal to
Resend.

Continue with “Automatically Acquiring PVM/DPVM Processes” on page 124.

Starting a DPVM Session

Starting a DPVM debugging session is similar to starting any other TotalView debug-
ging session. The only additional requirement is that you must start the DPVM dae-
mon before you start TotalView. See the DPVM documentation for information
about the DPVM daemon and its console program.
Version 6.2 TotalView Users Guide 123

5
Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
1 Use the dpvm command to start a DPVM console session; starting the ses-
sion also starts the DPVM daemon. If DPVM isn’t running when you start
TotalView (with DPVM support enabled), TotalView displays the following
error message before it exits:

Fatal error: Error enrolling as DPVM task: dpvm error

2 You can enable DPVM support in two ways. The first uses the TV::dvpm CLI
variable. As an alternative, you can add the –dpvm command-line option to
the totalview command. This option enables DPVM support.

The command-line options override the TV:dpvm command variable. For more
information on the totalview command, refer to “TotalView Command Syntax” in
the TOTALVIEW REFERENCE GUIDE.

3 Verify that the default action taken by TotalView for the SIGTERM signal is
appropriate. You can examine the default actions with the Process Window’s
File > Signals command in TotalView. Refer to “Handling Signals” on page 56
for more information.

DPVM uses the SIGTERM signal to terminate processes. Because TotalView stops
a process when the process receives a SIGTERM, the process is not terminated.
If you want the DPVM process to terminate, set the action for the SIGTERM sig-
nal to Resend.

If you enable PVM support using the TV::pvm variable and you need to use DPVM,
you must use both –no_pvm and –dpvm command-line options when you start
TotalView. Similarly, when enabling DPVM support us the TV::dpvm variable, you
can must use the –no_dpvm and –pvm command-line options.

NOTE You cannot use CLI variables to start both PVM and DPVM.

Automatically Acquiring PVM/DPVM Processes

This section describes how TotalView automatically acquires PVM and DPVM pro-
cesses in a PVM or DPVM debugging session. Specifically, TotalView uses the PVM
tasker to intercept pvm_spawn() calls.

When you start TotalView as part of a PVM or DPVM debugging session, it takes the
following actions:
124 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
g TotalView makes sure that no other PVM or DPVM taskers are running. If
TotalView finds a tasker on a host that it is debugging, it displays the following
message and then exits:
Fatal error: A PVM tasker is already running on host 'host'

g TotalView finds all the hosts in the PVM or DPVM configuration. Using the
pvm_spawn() call, TotalView starts a TotalView Debugger Server (tvdsvr) on each
remote host that has the same architecture type as the host TotalView is running
on. It tells you it has started a debugger server by displaying:
Spawning TotalView Debugger Server onto PVM host 'host'

If you add a host with a compatible machine architecture to your PVM or DPVM
debugging session after you start TotalView, TotalView automatically starts a debug-
ger server on that host.

After all debugger servers are running, TotalView will intercept every PVM or DPVM
task created with the pvm_spawn() call on hosts that are part of the debugging
session. If a PVM or DPVM task is created on a host with a different machine archi-
tecture, TotalView ignores that task.

When TotalView receives a PVM or DPVM tasker event, it takes the following actions:

1 TotalView reads the symbol table of the spawned executable.

2 If a saved breakpoint file for the executable exists and you have enabled
automatic loading of breakpoints, TotalView loads breakpoints for the pro-
cess.

3 TotalView asks if you want to stop the process before it enters the main()
routine.

If you answer Yes, TotalView stops the process before it enters main() (that is,
before it executes any user code). This allows you to set breakpoints in the
spawned process before any user code executes. On most machines, TotalView
stops a process in the start() routine of the crt0.o module if it is statically linked.
If the process is dynamically linked, TotalView stops it just after it finishes run-
ning the dynamic linker. Because the Process Window displays assembler instruc-
tions, you will need to use the View > Lookup Function command to display the
source code for the main() routine.

CLI EQUIVALENT: dlist function-name
Version 6.2 TotalView Users Guide 125

5
Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
For more information on this command, refer to “Finding the Source Code for Func-
tions” on page 213.

Attaching to PVM/DPVM Tasks

You can attach to a PVM or DPVM task if the task meets the following criteria:

g The machine architecture on which the task is running is the same as the ma-
chine architecture on which TotalView is running.

g The task must be created. (This is indicated when flag 4 is set in the PVM Tasks
and Configuration Window.)

g The task must not be a PVM tasker. If flag 400 is clear in the PVM Tasks and Con-
figuration Window, the process is a tasker.

g The executable name must be known. If the executable name is listed as a dash
(–), TotalView cannot determine the name of the executable. (This can occur if a
task was not created with the pvm_spawn() call.)

To attach to a PVM or DPVM task, complete the following steps:

1 Select Tools > PVM Tasks command from TotalView’s Root Window.

The PVM Tasks is displayed, as shown in Figure 73. This window displays current
information about PVM tasks and hosts—TotalView automatically updates this
information as it receives events from PVM.

Since PVM doesn’t always generate an event that allows TotalView to update this
window, you should use the Windows > Update command to ensure that you
are seeing the most current information.

For example, you can attach to the tasks named xep and mtile in Figure 73 be-
cause flag 4 is set. In contrast, you can’t attach to the tvdsvr and – (dash) exe-
cutables because flag 400 is set.

2 Dive on a task entry that meets the criteria for attaching to tasks. TotalView
attaches to the task.

3 If the task to which you attached has related tasks that can be debugged,
TotalView asks if you want to attach to these related tasks. If you answer Yes,
TotalView attaches to them. If you answer No, it only attaches to the task
you dove on.

After attaching to a task, TotalView looks for attached tasks that are related to this
task; if there are related tasks, TotalView places them in the same control group. If
126 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging PVM and DPVM Applications
TotalView is already attached to a task you dove on, it simply opens and raises the
Process Window for the task.

Reserved Message Tags
TotalView uses PVM message tags in the range 0xDEB0 through 0xDEBF to commu-
nicate with PVM daemons and the TotalView Debugger Server. Avoid sending mes-
sages that use these reserved tags.

Cleanup of Processes
The pvmgs process registers its task ID in the PVM database. If the pvmgs process
is terminated, the pvm_joingroup() routine hangs because PVM won’t clean up the
database. If this happens, you must terminate and then restart the PVM daemon.

TotalView attempts to clean up the TotalView Debugger Server daemons (tvdsvr),
that also act as taskers. If some of these processes do not terminate, you must
manually terminate them.

FIGURE 73: PVM Tasks and Configuration Window

➋

➍

➌

➎

➏ ➐

➊ Task ID (TID) ➎ Hosts
➋ Parent TID ➏ Daemon TID
➌ UNIX Process ID (PID) ➐ Machine Architecture
➍ Tasks

➊

Version 6.2 TotalView Users Guide 127

5
Setting Up Parallel Debugging Sessions

Debugging Shared Memory (SHMEM) Code
Debugging Shared Memory (SHMEM) Code

TotalView supports the SGI IRIX logically shared, distributed memory access
(SHMEM) library.

To debug a SHMEM program, follow these steps:

1 Link it with the dbfork library. See “Linking with the dbfork Library” in the “Compil-
ers and Platforms” chapter of the TOTALVIEW REFERENCE GUIDE.

2 Start TotalView on your program. See Chapter 3, “Setting Up a Debugging Ses-
sion” on page 39.

3 Set at least one breakpoint after the call to the start_pes() SHMEM routine.
(This is illustrated in Figure 74.)

NOTE You cannot single-step over the call to start_pes().

The call to start_pes() creates new worker processes that return from the
start_pes() call and execute the remainder of your program. The original process
never returns from start_pes(), but instead stays in that routine, waiting for the
worker processes it created to terminate.
128 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging UPC Programs
Debugging UPC Programs

TotalView lets you debug UPC programs that compiled using the HP Compaq Alpha
UPC 2.0 and the Intrepid (SGI gcc UPC) compilers. This section only discusses UPC-
specific features of TotalView. It not an introduction to the UPC language. If you’re
looking for an introduction, you’ll find information at http://www.gwu.edu/~upc.

FIGURE 74: SHMEM Sample Session

➋

➊

➊ SHMEM starter process
➋ SHMEM worker processes
➌ Select a worker process in the Root Window
➍ Set breakpoint after the call to start_pes()

➌

➍

Version 6.2 TotalView Users Guide 129

5
Setting Up Parallel Debugging Sessions

Debugging UPC Programs
NOTE When debugging UPC code, TotalView requires help from a UPC assistant library that
your compiler vendor provides. You may need to include the location of this library in your
LD_LIBRARY_PATH variable. Etnus also provides assistants that you can use. You can find these
assistants at http://www.etnus.com/Products/TotalView/developers/index.html

Topics in this section are:

g “Viewing Shared Objects” on page 130

g “Pointer to Shared” on page 132

Invoking TotalView

Here’s how to invoke TotalView upon UPC programs:

g When running on an SGI system using the gcc UPC compiler, invoke TotalView
upon your UPC program in the same way as any other program. For example:
totalview prog_upc -a args_to_foo_upc

g When running on HP Compaq SC machines, debug your UPC code in the same
way that you would debug other kinds of parallel code. That is, invoke TotalView
upon prun. For example:
totalview prun -a -n <node_count> prog_upc args_to_prog_upc

Viewing Shared Objects

Totalview displays UPC shared objects, and will fetch data from the UPC thread with
which it has an affinity. For example, TotalView always fetches shared scalar vari-
ables from thread 0.

The upper-left figure in Figure 75 displays elements of a large shared array. You can
manipulate an examine shared arrays the same as any other array. For example, you
can slice, filter, obtain statistical information on, and so forth. (For more informa-
tion on displaying array data, see Chapter 13, “Examining Arrays” on page 319) The
bottom-right illustration shows a 10-element slice of this array.

In this illustration, the Shared Address area TotalView tells you that it is displaying
the address of the array.

As the array is shared, it has an additional property: the element’s affinity. You can
display this information if you select the Variable Window’s View > Node Display
130 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging UPC Programs
command. This command tells TotalView to add a column that indicates the node
associated with the value. This is shown in the Figure 76 on page 131.

FIGURE 75: A Sliced UPC Array

FIGURE 76: UPC Variable Window Showing Nodes
Version 6.2 TotalView Users Guide 131

5
Setting Up Parallel Debugging Sessions

Debugging UPC Programs
You can also use the Tools > Visualize Distribution to visualize this array. For more
information on visualization, see “Using the Visualizer to Display Array Data” on page
163.

Pointer to Shared

TotalView understands pointer-to-shared data and displays the components of the
data, as well as the target of the pointer to shared. For example, Figure 78 shows
what is displayed:

Because the Type field shows the full type name, TotalView is telling you that this is
a pointer to a shared int with a block size of 5.

In this figure, TotalView also displays the upc_threadof ("T0"), the upc_phaseof
("P1"), and the upc_addrfield (0x0x1001df30) components of this variable.

In the same way that TotalView normally shows the target of a pointer variable, it
also shows the target of a UPC pointer variable. TotalView will fetch the target of the
pointer from the UPC thread with which the pointer has affinity.

FIGURE 77: Laminated UPC Variable Window
132 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Debugging UPC Programs
You can update the pointer by selecting the pointer value and editing the thread,
phase, or address values. If the phase is corrupt, you’ll see something like the fol-
lowing in the Value field:

Value: T0;P6;0x3ffc0003b00 <Bad phase [max 4]> ->
0xc0003c80 (-1073726336)

This example is indicating that the pointer is invalid because the phase is outside
the legal range. It shows a similar message if the thread is invalid.

Since the pointer is not shared, you can use the Tools > Laminate command to
display the value from each of the UPC threads.

FIGURE 78: Pointer to a Shared Variable

FIGURE 79: UPC Laminated Variable
Version 6.2 TotalView Users Guide 133

5
Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
Parallel Debugging Tips

This section contains some information that you may find useful when debugging
parallel programs. The topics in this section are:

g “Attaching to Processes” on page 134

g “General Parallel Debugging Tips” on page 137

g “MPICH Debugging Tips” on page 139

g “IBM PE Debugging Tips” on page 140

Attaching to Processes

In a typical multiprocess job, you’re interested in what’s occurring in some of your
processes and not as much interested in others. By default, TotalView tries to at-
tach to all the processes that you program starts. If there are a lot of processes,
there may be considerable overhead involved in opening and communicating with
the jobs. You can minimize this overhead by using the Group > Attach Subsets
command, which displays the dialog box shown in Figure 80.

FIGURE 80: Group > Attach Subset Dialog Box
134 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
By selecting the boxes at the left side of the list, you tell TotalView which processes
it should attach to. So, while your program will launch all of these processes,
TotalView will only attach to the processes that you have selected here.

The four controls underneath the All and the None buttons let you limit what
TotalView automatically attaches to.

g The Communicator control specifies that the processes must be involved with
the communicators that you select. For example, if something goes wrong that
involves a communicator, selecting it from the list tells TotalView that it should
only attach to the processes that use that communicator.

g The Talking to Rank control further limits the processes to those that you name
here. Most of the entries in this list are just the process numbers. Two other en-
tries are useful: All and MPI_ANY_SOURCE.

g The three checkboxes in the Message Type area add yet another qualifier.
Checking a box tells TotalView that it should only display communicators that are
involved with a Send, Receive, or Unexpected messages.

After you’ve found the problem, you can detach from these nodes by selecting
None. In most cases, you would use the All button to set all the check boxes, then
clear the ones that you’re not interested in.

Many applications place the ranks numbers in a variable so they can be referred to
easily. If you do this, you can display the variable in a Variable Window and then
select the Tools > Attach Subset (Array of Ranks) command to display this dialog
box

While you can use the Group > Attach command at any time, you would probably
use it immediately before TotalView launches processes. Unless you have set pref-
erences otherwise, TotalView will stop and ask if you want it stop your processes.
When selected, the Halt control group check box also tells TotalView that it stop a
process just before it begins executing. (See Figure 81 on page 136.)

The commands on the Parallel Page with the File > Preferences Dialog Box let you
control what TotalView will do when your program goes parallel. (See Figure 82 on
page 136.)
Version 6.2 TotalView Users Guide 135

5
Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
The When a job goes parallel or calls exec() radio buttons have the following
meanings:

g Stop the group: Stops the control group immediately after the processes are
created.

g Run the group: Allows all newly created processes in the control group to run
freely.

g Ask what to do: Asks what should occur. If you select this option, TotalView will
ask if it should start the created processes.

FIGURE 81: Stop Before Going Parallel Question Dialog Box

FIGURE 82: File > Preferences: Parallel Page

CLI EQUIVALENT: dset TV::parallel_stop
136 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
The When a job goes parallel radio buttons have the following meaning:

g Attach to all: TotalView automatically attaches to all processes when they begin
executing.

g Attach to none: TotalView will not attach to any created process when it begins
executing.

g Ask what to do: Asks what should occur. If you select this option, TotalView
opens the same dialog box that is displayed when you select Group > Attach
Subsets. TotalView will then attach to the processes that you have selected. Note
that this dialog box isn’t displayed when you set the preference. Instead, it con-
trols what will happen when your program creates parallel processes.

General Parallel Debugging Tips

Here are some tips that are useful for debugging most parallel programs:

g Breakpoint behavior
When you’re debugging message-passing and other multiprocess programs, it is
usually easier to understand the program’s behavior if you change the default
stopping action of breakpoints and barrier breakpoints. By default, when one
process in a multiprocess program hits a breakpoint, TotalView will stop all the
other processes.

To change the default stopping action of breakpoints and barrier breakpoints,
you can set TotalView preferences. Information on these preferences can be
found in the online Help. These preferences tell TotalView if it should allow other
processes and threads to continue to run when a process or thread hits the
breakpoint.

These options only affect the default behavior. As usual, you can choose a be-
havior for a breakpoint by setting the breakpoint properties in the File >
Preferences’s Action Points Page. See “Setting Breakpoints for Multiple Processes” on
page 346.

g Process synchronization
TotalView has two features that make it easier to get all of the processes in a mul-
tiprocess program synchronized and executing a line of code.

CLI EQUIVALENT: dset TV::parallel_attach
Version 6.2 TotalView Users Guide 137

5
Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
Process barrier breakpoints and the process hold/release features work together
to help you control the execution of your processes. See “Barrier Points” on page
350.

The Process Window’s Group > Run To command is a special kind of stepping
command. It allows you to run a group of processes to a selected source line or
instruction. See “Stepping (Part I)” on page 241.

g Using group commands
Group commands are often more useful than process commands.

It is often more useful to use the Group > Go command to restart the whole ap-
plication instead of the Process > Go command.

You would then use the Group > Halt command instead of Process > Halt.

The group-level single-stepping commands such as Group > Step and Group >
Next allow you to single-step a group of processes in a parallel. See “Stepping
(Part I)” on page 241.

g Process-level stepping
If you use a process-level single-stepping command in a multiprocess program,
TotalView may appear to be hung (it continuously displays the watch cursor). If
you single-step a process over a statement that can’t complete without allowing
another process to run and that process is stopped, the stepping process ap-
pears to hang. This can occur, for example, when you try to single-step a process
over a communication operation that cannot complete without the participation
of another process. When this happens, you can abort the single-step operation
by selecting Cancel in the Waiting for Command to Complete Window that

CLI EQUIVALENT: dfocus g dgo
Abbreviation: G

CLI EQUIVALENT: dfocus g dhalt
Abbreviation: H

CLI EQUIVALENT: dfocus g dstep
Abbreviation: S

dfocus g dnext
Abbreviation: N
138 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
TotalView will display. As an alternative, consider using a group-level single-step
command.

NOTE Etnus receives many bug reports about processes being hung. In almost all
cases, the reason is that one process is waiting for another. Using the Group debug-
ging commands almost always solves this problem.

g Determining which processes and threads are executing
The TotalView Root Window helps you determine where various processes and
threads are executing. When you select a line of code in the Process Window, the
Root Window’s Attached Page is updated to show which processes and threads
are executing that line. See “Displaying Thread and Process Locations” on page 232.

g Viewing variable values
You can view (laminate) the value of a variable that is replicated across multiple
processes or multiple threads in a single Variable Window. See “Displaying a Vari-
able in All Processes or Threads” on page 333.

g Restarting from within TotalView
You can restart a parallel program at any time. If your program runs too far, you
can kill the program by selecting the Group > Delete command. This command
kills the master process and all the slave processes. Restarting the master pro-
cess (for example, mpirun or poe) recreates all of the slave processes. Startup is
faster when you do this because TotalView doesn’t need to reread the symbol ta-
bles or restart its server processes since they are already running.

MPICH Debugging Tips

Here are some debugging tips that apply only to MPICH:

g Passing options to mpirun
You can pass options to TotalView through the MPICH mpirun command.

To pass options to TotalView when running mpirun, you can use the TOTALVIEW
environment variable. For example, you can cause mpirun to invoke TotalView
with the –no_stop_all option as in the following C shell, example:

setenv TOTALVIEW "totalview –no_stop_all"

CLI EQUIVALENT: Type Ctrl+C

CLI EQUIVALENT: dfocus g dkill
Version 6.2 TotalView Users Guide 139

5
Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
g Using ch_p4
If you start remote processes with MPICH/ch_p4, you may need to change the
way TotalView starts its servers.

By default, TotalView uses rsh to start its remote server processes. This is the
same behavior as ch_p4. If you configure MPICH/ch_p4 to use a different start-
up mechanism from another process, you will probably also need to change the
way that TotalView starts the servers.

For more information about tvdsvr and rsh, see “Setting Single-Process Server
Launch Options” on page 74. For more information about rsh, see “Using the Single-
Process Server Launch Command” on page 80.

IBM PE Debugging Tips

Here are some debugging tips that apply only to IBM MPI (PE):

g Avoid unwanted timeouts
Timeouts can occur if you place breakpoints that stop other processes too soon
after calling MPI_Init() or MPL_Init(). If you create “stop all” breakpoints, the first
process that gets to the breakpoint stops all the other parallel processes that
have not yet arrived at the breakpoint. This may cause a timeout.

To turn the option off, select the Process Window’s Action Point > Properties
command while the line with the stop symbol is selected. After the Properties Di-
alog Box appears, you should select the Process button in the When Hit, Stop
area and also select Plant in share group.

g Control the poe process
Even though the poe process continues under TotalView control, you should not
attempt to start, stop, or otherwise interact with it. Your parallel tasks require
that poe continue to run. For this reason, if poe is stopped, TotalView automati-
cally continues it when you continue any parallel task.

g Avoid slow processes due to node saturation
If you try to debug a PE program in which more than three parallel tasks run on a
single node, the parallel tasks on each node may run noticeably slower than they
would run if you were not debugging them.

In general, the number of processes your are running on a node should be the
same as the number of processors in the node.

CLI EQUIVALENT: dbarrier location –stop_when_hit process
140 TotalView Users Guide Version 6.2

Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
This becomes more noticeable as the number of tasks increases, and, in some
cases, the parallel tasks may make hardly any progress. This is because PE uses
the SIGALRM signal to implement communications operations, and AIX requires
that debuggers must intercept all signals. As the number of parallel tasks on a
node increases, TotalView becomes saturated and can’t keep up with the
SIGALRMs being sent, thus slowing down the tasks.
Version 6.2 TotalView Users Guide 141

5
Setting Up Parallel Debugging Sessions

Parallel Debugging Tips
142 TotalView Users Guide Version 6.2

Part III: Using the GUI
The two chapters in this part of the Users Guide only contain information that you’ll
need if you’re using TotalView’s GUI.

Chapter 6: Using TotalView’s Windows
Describes using the mouse and the more important Windows.

Chapter 7: Visualizing Programs and Data
Some of TotalView’s commands and tools are only useful if you’re us-
ing the GUI. For example, the Visualizer graphically displays an array’s
data.
Version 6.2 TotalView Users Guide 143

144 TotalView Users Guide Version 6.2

Version 6.2
Chapter 6
Using TotalView’s Windows
This chapter introduces you to the TotalView interface and describes:

g “Using the Mouse Buttons” on page 145
g “Using the Root Window” on page 146
g “Using the Process Window” on page 150
g “Diving into Objects” on page 152
g “Resizing and Positioning Windows and Dialog Boxes” on page 155
g “Editing Text” on page 156
g “Saving the Contents of Windows” on page 157

Using the Mouse Buttons

TotalView uses the buttons on your three-button mouse as follows:

Table 7: Mouse Button Functions

Button Action Purpose How to Use It
Left Select Selects or edits object,

scrolls in windows and
panes

Move the cursor over the object and click
the button.

Middle Paste Writes information
previously copied or cut
into the clipboard

Move the cursor to where you will be
inserting the information and click the
button; not all windows support pasting.

Dive Displays more information
or replaces window
contents

Move the cursor over an object, then click
the middle mouse button.
TotalView Users Guide 145

6
Using TotalView’s Windows

Using the Root Window
In most cases, a single-click selects what’s under the cursor and a double-click
dives on the object. However, if the field is editable, TotalView goes into its edit
mode where you can alter the selected item's value.

In some places such as the Stack Trace Pane, selecting a line tells TotalView that it
should perform an action. In this pane, TotalView dives on the selected routine. (In
this case, diving means that TotalView finds the selected routine and show it in the
Source Pane.)

In the line number area of the Source Pane, a left mouse click sets a breakpoint at
that line. TotalView shows you that it has set a breakpoint by displaying a
icon instead of a line number.

Selecting the icon a second time deletes the breakpoint. If you change any
of the breakpoint’s properties are if you had created an evaluation point—this is
indicated by an icon—selecting the icon disables it. For more information
on breakpoints and evaluation points, refer to Chapter 14, “Setting Action Points” on
page 337.

Using the Root Window

The Root Window appears when you start TotalView. If you do not enter a program
name when starting TotalView, it is the only window that appears. If you indicate a
program name, TotalView also open a Process Window containing the program’s
source code.

The Root Window contains the following four tabbed pages:

g Attached: Displays a list of all the processes and threads being debugged. Ini-
tially—that is, before your program begins executing—the Root Window just

Right Context
menu

Displays a menu with
commonly used commands

Move the cursor over an object and click
the button.

Most windows and panes have context
menus; dialog boxes do not have context
menus.

Table 7: Mouse Button Functions (cont.)

Button Action Purpose How to Use It
146 TotalView Users Guide Version 6.2

Using TotalView’s Windows

Using the Root Window
contains the name of the program being debugged. As processes and threads
are created, TotalView adds them to this list. Associated with each is a name, lo-
cation (if a remote process), process ID, status, and a list of executing threads for
each process. It also shows the thread ID, status, and the routine being executed
in each thread.
Figure 83 shows the Attached Page for an executing multithreaded multiprocess
program.

Notice the triangles on the left. If a triangle is pointing right, you can click on it to
display the process’s threads. If it is pointing down, clicking on it conceals this
thread information.

When debugging a remote process, TotalView displays an abbreviated version of
the host name on which the process is running in brackets ([]). The full host
name appears in brackets in the title bar of the Process Window. In Figure 84 on
page 148, the process is running on the machine dewey.etnus.com. This name
is abbreviated in the Root Window. This figure also describes the contents of the
columns in this window.

When you dive on a line in this window, TotalView displays the source for the pro-
cess or thread in a Process Window.

g Unattached: Displays processes over which you have control. If you can’t at-
tach to one of these processes, TotalView displays it in gray. Figure 85 on
page 148 shows the Unattached Page.
Diving on processes in this pane tells TotalView to attach to them.

FIGURE 83: Root Window Attached Page
Version 6.2 TotalView Users Guide 147

6
Using TotalView’s Windows

Using the Root Window
FIGURE 84: Root Window Showing Remote

FIGURE 85: Root Window Unattached Page

➊ Collapse/expand toggle ➎ Thread list
➋ Process ID (PID) ➏ Thread ID (TID/SYSTID)
➌ Thread status ➐ Remote process location
➍ Program name

➊ ➋ ➌ ➍

➎

➏ ➐
148 TotalView Users Guide Version 6.2

Using TotalView’s Windows

Using the Root Window
g Groups: Lists the groups used by your program. The top pane in Figure 86 lists
all of your program’s groups. This list includes all the groups that TotalView cre-
ates and all that you create using the CLI. When you select a group in the top
pane, the group’s members are displayed in the bottom pane.

g Log: Contains a log of the debugging actions. (See Figure 87.) This information is
sometimes useful when analyzing the behavior of misbehaving multiprocess/mul-
tithreaded programs.

FIGURE 86: Root Window Groups Page

FIGURE 87: Root Window Log Page
Version 6.2 TotalView Users Guide 149

6
Using TotalView’s Windows

Using the Process Window
Using the Process Window

The Process Window, which is shown in Figure 88, contains the code for the process
or thread you’re debugging, as well as other related information. This window con-
tains five panes of information. The large scrolling list in the middle of the Process
Window is the Source Pane. (The contents of these panes are discussed later in this
section.)

As you examine the Process Window, notice the following:

g The thread ID shown in the Root Window and in the process’s Threads Pane is
the TotalView-assigned logical thread ID (TID) and system-assigned thread ID
(SYSTID). On systems such as HP Alpha Tru64 UNIX where the TID and SYSTID
values are the same, TotalView displays only the TID value.
In other windows, TotalView uses the value pid.tid to identify a process’s threads.

The Threads Pane shows the list of threads that currently exist in the process.
When you select a different thread in this list, TotalView updates the Stack Trace
Pane, Stack Frame Pane, and Source Pane to show the information for that
thread. When you dive on a different thread in the thread list, TotalView finds or
opens a new window displaying information for that thread.

The number in the Threads Pane title (➒ in Figure 88 on page 151) is the number
of threads that currently exist in the process.

g The Stack Trace Pane shows the call stack of routines that the selected thread is
executing. You can move up and down the call stack by clicking on the routine’s
name (stack frame). When you select a different stack frame, TotalView updates
the Stack Frame and Source Panes to show the information about the routine
you just selected.

g The Stack Frame Pane displays all of a routine’s parameters, its local variables, and
the registers for the selected stack frame.

g The information displayed in the Stack Trace and Stack Frame Panes reflects the
state of the process when it was last stopped. This means that the information
they are displaying is not up-to-date while the thread is running.

g The left margin of the Source Pane displays line numbers and action point icons.
You can place a breakpoint at any line whose line number is contained within a
box. (See Figure 89.) The box indicates that executable code was created by the
source code.
150 TotalView Users Guide Version 6.2

Using TotalView’s Windows

Using the Process Window
When you place a breakpoint on a line, TotalView places a STOP icon over the
line number. An arrow over the line number shows the current location of the
program counter (PC) within the selected stack frame. See Figure 89.

FIGURE 88: Process Window

Source Pane

Stack Trace
Pane

➋ ➌

➎

➏

➐

➑

➓

➒

➊ Process status ➏ Language of routine
➋ Thread ID (TID) ➐ Line number area
➌ Process ID (PID) ➑ Current PC
➍ Navigation controls ➒ Thread count
➎ Thread status ➓ Selected thread

➊

Stack Frame
Pane

Action Points
Pane

➍

Threads Pane
Version 6.2 TotalView Users Guide 151

6
Using TotalView’s Windows

Diving into Objects
Each thread has its own unique program counter (PC). When you stop a multipro-
cess or multithreaded program, the routine displayed in the Stack Trace Pane for
a thread depends on the thread’s PC. Because threads execute asynchronously,
you’ll usually find that threads are stopped at different places. (When your thread
hits a breakpoint, the TotalView default is to stop all the other threads in the pro-
cess as well.)

g The Action Points Pane shows the list of breakpoints, evaluation points, and watch-
points for the process.

Diving into Objects

Diving, which is clicking your middle mouse button on something in a TotalView
window, is one of TotalView’s more distinguishing features.

NOTE In some cases, single-clicking preforms a dive. For example, single-clicking on a func-
tion name in the Stack Trace Pane tells TotalView to dive into the function. In other cases,
double-clicking does the same thing. While this may sound confusing, it’s pretty intuitive and
you’ll be diving without thinking almost instantaneously.

For example, diving on processes and threads in the Root Window is the quickest
way to display a Process Window that contains information about what you’re div-
ing on. The procedure is simple: dive on a process or thread and TotalView takes
care of the rest. Here’s another example: diving on variables in the Process Window
tells TotalView to display information about the variable in a Variable Window.

FIGURE 89: Line Numbers, with Stop Icon and PC Arrow
152 TotalView Users Guide Version 6.2

Using TotalView’s Windows

Diving into Objects
Table 8 describes typical diving operations.

TotalView tries to reuse windows whenever possible. For example, if you dive on a
variable and that variable is already being displayed in a window, TotalView pops the
window to the top of the display. If you want the information to appear in a sepa-
rate window, use the View > Dive Anew command.

Table 8: Diving

Dive on: Information Displayed by Diving:
Process or thread When you dive on a thread in the Root Window,

TotalView finds or opens a Process Window for that
process. If it doesn’t find a matching window, TotalView
replaces the contents of an existing window and shows
you the selected process.

Subroutine The source code for the routine replaces the current
contents of the Source Pane—this is called a nested
dive. When this occurs TotalView places a right angle
bracket (>) in the process’s title. Every time it dives, it
adds another angle bracket. See Figure 90, which follows
this table.
A routine must be compiled with source-line information
(usually, with the –g option) for you to dive into it and
see source code. If the subroutine wasn’t compiled with
this information, TotalView displays the routine’s
assembler code.

Variable The contents of the variable appear in a separate
Variable Window.

Pointer TotalView dereferences the pointer and shows the result
in a separate Variable Window. Given the nature of
pointers, you may need to cast the result into something
that is more to your liking.

Array element, structure element, or
referenced memory area

The contents of the element or memory area replaces
the contents that were in the Variable Window—this is
known as a nested dive.

Routine in the Stack Trace Pane The stack frame and source code for the routine appear
in a Process Window.

FIGURE 90: Nested Dive
Version 6.2 TotalView Users Guide 153

6
Using TotalView’s Windows

Diving into Objects
NOTE Using on a process or a thread may not create a new window if TotalView determines
that it can reuse a Process Window. If you really want to see information in two windows, use
the Process Window’s Window > Duplicate command.

When you dive into functions in the Process Window or when you are chasing point-
ers or following structure elements in the Variable Window, you can move back and
forth between your selections by using the forward and backward icons. The location
of the two controls is shown in the boxed area in Figure 91.

For additional information about displaying variable contents, refer to “Diving in
Variable Windows” on page 291.

Other windowing commands that you can use are:

g Window > Duplicate: (Variable Window) Creates a duplicate copy of the current
Variable Window.

g Window > Duplicate Base: (Variable Window) Creates a copy of the current Vari-
able Window. Unlike what happens when you use the Window > Duplicate com-
mand, this command retains the dive stack.

g File > Close: Closes an open window.

g File > Close Relatives: Closes windows that are related to the current window.
The current window isn’t closed.

g File > Close Similar: Closes the currently open window and all windows similar
to it. When you have lots of similar windows, this is a great time-saver.

FIGURE 91: Backward and Forward Buttons
154 TotalView Users Guide Version 6.2

Using TotalView’s Windows

Resizing and Positioning Windows and Dialog Boxes
Resizing and Positioning Windows and Dialog Boxes

You can resize most of TotalView’s windows and dialog boxes. While TotalView tries
to do the right thing, you can push things to the point where shrinking doesn’t work
very well. Figure 92 shows a before and after look where a dialog box was made too
small.

Many programmers like to have their windows always appear in the same position
in each session. TotalView has two commands that can help:

g Window > Memorize: Tells TotalView it should remember the position of the
current window. The next time you bring up this window, it’ll be in this position.

g Window > Memorize All: Tells TotalView it should remember the positions of
just about all of its windows. The next time you bring up any of the windows dis-
played when you had used this command, it will be in the same position.

Most modern window managers such as KDE or Gnome do an excellent job manag-
ing window position. If you are using an older window manager such as twm or
mwm, you may want to select the Force window positions (disables window

FIGURE 92: Resizing (and Sometimes Its Consequences)
Version 6.2 TotalView Users Guide 155

6
Using TotalView’s Windows

Editing Text
manager placement modes) check box option located on the Options Page of the
File > Preferences Dialog Box. This tells TotalView to manage a window’s position
and size. If it isn’t selected, TotalView only manages a window’s size.

Editing Text

The TotalView field editor lets you change the values of fields in windows or change
text fields in dialog boxes. To edit text:

1 Click the left mouse button to select the text you wish to change. If you can
edit the selected text, it appears within a highlighted rectangle, and you will
see an editing cursor. (See Figure 93.)

2 Edit the text and press Return.

Like other Motif-based applications, you can use your mouse to copy and paste
text within TotalView and to other X Windows applications by using your mouse
buttons.

You can also manipulate text by using Edit > Copy, Edit > Cut, Edit > Paste, and
Edit > Delete.

In most cases, clicking your middle mouse button tells TotalView to dive. However,
if TotalView is displaying an editing cursor, clicking your middle mouse button tells
TotalView to paste information.

FIGURE 93: Editing Cursor
156 TotalView Users Guide Version 6.2

Using TotalView’s Windows

Saving the Contents of Windows
Saving the Contents of Windows

You can write an ASCII equivalent to most pages and panes by using the File >
Save Pane command. This command also lets you pipe data to UNIX shell com-
mands. (See Figure 94.)

When piping information, TotalView sends what you’ve typed to /bin/sh. This means
that you can enter a series of shell commands. For example, here is a command
that ignores the top five lines of output, compares the current ASCII text to an ex-
isting file, and writes the differences to another file:

| tail +5 | diff – file > file.diff

FIGURE 94: File > Save Pane Dialog Box
Version 6.2 TotalView Users Guide 157

6
Using TotalView’s Windows

Saving the Contents of Windows
158 TotalView Users Guide Version 6.2

Version 6.2
Chapter 7
Visualizing Programs and Data
TotalView provides a set of tools that allow you to visualize how your program is per-
forming and the values of variables. This chapter describes:

g “Displaying Your Program’s Call Tree” on page 159
g “Displaying Memory Statistics” on page 161
g “Using the Visualizer to Display Array Data” on page 163

Other visualization tools are described in the following sections:

g “Using the P/T Set Browser” on page 271
g “Displaying the Message Queue Graph” on page 107

Displaying Your Program’s Call Tree

Debugging is an art, not a science. Debugging often means having the “intuition” to
know what a problem means and where to look for it. Locating a problem is often
90% or more of the effort. TotalView’s call tree is one tool that helps you get an un-
derstanding of what your program is doing so that you can begin to understand
how your program is executing.

Use the Tools > Call Tree command in the Process Window to tell TotalView to dis-
play a Call Tree Window. (See Figure 95 on page 160.)

The call tree is a diagram showing all the currently active routines. These routines
are linked by arrows indicating that one routine is called by another. TotalView’s call
tree is a dynamic call tree in that it displays the call tree at the time when TotalView
creates it. The Update button tells TotalView to recreate this display.
TotalView Users Guide 159

7
Visualizing Programs and Data

Displaying Your Program’s Call Tree
NOTE You’ll find information on using the P/T Set Controls in the top portion of this window
in Chapter 11, “Using Groups, Processes, and Threads” on page 239.

You can tell TotalView to display a call tree for the processes and threads specified
with the controls at the top of this window. If you don’t touch these controls,
TotalView displays a call tree for the group defined in the icon bar of your Process
Window. If TotalView is displaying the call tree for a multiprocess or multithreaded
program, numbers next to the arrows indicate how many times a routine is on the
call stack.

As you begin to understand your program, you will see that it has a rhythm and a
dynamic that is reflected in this diagram. As you examine and understand this
structure, you will sometimes see things that don’t look right—which is a subjective
response to how your program is operating. These places are often where you want
to begin looking for problems.

FIGURE 95: Tools > Call Tree Dialog Box
160 TotalView Users Guide Version 6.2

Visualizing Programs and Data

Displaying Memory Statistics
Looking at the call tree can also tell you where bottlenecks are occurring. For exam-
ple, if one routine is used by many other routines and that routine controls a
shared resource, this thread may be negatively affecting performance. For example,
in Figure 95, the snore routine might be a bottleneck. Giving good names to rou-
tines helps. For example, if you see lots of routines in a routine named snore,
you’ve probably designed things to that routines will be waiting there, so this
wouldn’t represent a problem.

Displaying Memory Statistics

The Tools > Memory Usage Window tells you how your program is using memory
and where this memory is being used. The best way to use this window is to com-
pare memory use over time so that you can tell if your program is leaking memory. If
a program is leaking memory, you’ll see that the amount of memory being used
steadily increases over time. Figure 96 shows the By Process Pane of the Memory
Usage window.

When you see this information within TotalView, the maximum value of an item is
displayed in red and the minimum value is displayed in blue. This information spec-

FIGURE 96: Tools > Memory Usage Window
Version 6.2 TotalView Users Guide 161

7
Visualizing Programs and Data

Displaying Memory Statistics
ifies the amount of memory used by the executable’s text and data segments, and
the TotalView process IDs.

You can change the sort order by clicking on a column’s header or by using the con-
trols at the bottom of the window.

Notice that if you add the memory values of all columns but the last, the sum
doesn’t equal this last column’s value. This is because most operating systems
divide segments into pages, and information in a segment doesn’t cross page
boundaries.

Here’s the definition for most of these columns:

Text The amount of memory needed to store your program’s ma-
chine code instructions.

Data The amount of memory required to store initialized data.

Heap The amount of memory currently being used for data created
at runtime.

Stack The amount of memory used by the currently executing rou-
tine and all the routines that have invoked it.

StackVm The logical size of the stack is the difference between the cur-
rent value of the stack pointer and address from which the
stack originally grew. This value can differ from the size of the
virtual memory mapping in which the stack resides.

This value is that size difference.

VmSize The sum of the sizes of the mappings in the process's address
space.

NOTE The online Help has more information.

Using the P/T Set controls at the top of the window is discussed in Chapter 11,
“Using Groups, Processes, and Threads” on page 271.

The By Library Pane (shown in Figure 97 on page 163) shows which library files are
contained within your executable.

CLI EQUIVALENT: dmstat
162 TotalView Users Guide Version 6.2

Visualizing Programs and Data

Using the Visualizer to Display Array Data
Clicking on any of the columns tells TotalView to sort the values in that column. You
can change the order form ascending to descending (or descending to ascending)
by clicking a second time on the column heading. If you’re so inclined, there are
commands for sorting these columns in the menubar.

Using the Visualizer to Display Array Data

The TotalView Visualizer creates graphic images of your program’s array data.

NOTE The Visualizer isn’t available on Linux Alpha and 32-bit SGI Irix.

Topics in this section are:

g “How the Visualizer Works” on page 164

g “Configuring TotalView to Launch the Visualizer” on page 165

g “Visualizing Data Manually” on page 168

g “Visualizing Data Programmatically” on page 169

g “Using the Visualizer” on page 170

g “Using the Graph Window” on page 173

FIGURE 97: Tools > Memory Usage Window: By Library Pane
Version 6.2 TotalView Users Guide 163

7
Visualizing Programs and Data

Using the Visualizer to Display Array Data
g “Using the Surface Window” on page 177

g “Launching the Visualizer from the Command Line” on page 180

How the Visualizer Works

The Visualizer is a stand-alone program that is integrated with TotalView. This rela-
tionship gives you a lot of flexibility:

g If you launch the Visualizer from within TotalView, you can visualize your pro-
gram’s data as you are debugging your program.

g You can save the data that would be sent to the Visualizer, and then invoke the
Visualizer from the command line and have it read this previously written
data.(See Figure 98.)

g Because TotalView is sending a data stream to the Visualizer, you can even re-
place our Visualizer with any tool that can read this data.

NOTE The online Help contains information on adapting a third-party visualizer so
that it can be used with TotalView.

Visualizing your program’s data is a two step process:

1 You select the data that you want visualized.

2 You tell the Visualizer how it should display this data.

TotalView marshals the program’s data and pipes it to the Visualizer. The Visualizer
reads this date and displays it for analysis. (See Figure 99 on page 165.)

FIGURE 98: TotalView Visualizer Relationships

Launch Third
Party Visualizer

Launch Visualizer
from Command Line

TotalView
Visualizer

Third Party
Visualizer

Launch Visualizer
from TotalView

Save Data
to File

Visualizer
Data File

TotalView
164 TotalView Users Guide Version 6.2

Visualizing Programs and Data

Using the Visualizer to Display Array Data
Configuring TotalView to Launch the Visualizer

TotalView launches the Visualizer when you select the Tools > Visualize command
from the Variable Window. It will also launch it if or when you use a $visualize func-
tion within an evaluation point and the Tools > Evaluate Dialog Box.

TotalView lets you set a preference that disables visualization. This lets you turn off
visualization when your program executes code containing evaluation points, with-
out having to individually disable all the evaluation points.

To change the Visualizer launch options interactively, select File > Preferences, and
then select the Launch Strings Tab. (See Figure 100 on page 166.)

Using the commands in this page, you can:

g Customize the command TotalView uses to start a visualizer by entering the visu-
alizer’s startup command in the Command edit box. Entering information in this
field is discussed a little later in this section.

g Change the autolaunch option. If you want to disable visualization, clear the
Enable Visualizer Launch check box.

g Change the maximum permissible rank. Edit the value in the Maximum array
rank edit field to save the data exported from the debugger or display it in a dif-
ferent visualizer. A rank’s value can range from 1 to 16.

FIGURE 99: TotalView Visualizer Connection

TotalView: Extracts
data from an array

TotalView Visualizer: Displays the
array data graphically

Sends data to
Visualizer
Version 6.2 TotalView Users Guide 165

7
Visualizing Programs and Data

Using the Visualizer to Display Array Data
Setting the maximum permissible rank to either 1 or 2 (the default is 2) ensures
that the TotalView Visualizer can use your data—the Visualizer displays only two
dimensions of data. This limit doesn’t apply to data saved in files or to third-
party visualizers that can display more than two dimensions of data.

g Clicking on the Defaults button returns all values to their defaults. This reverts
options to their defaults even if you have used X resources to change them.

If you disable visualization while the Visualizer is running, TotalView closes its con-
nection to the Visualizer. If you reenable visualization, TotalView launches a new
Visualizer process the next time you visualize something.

Visualizer Launch Command
You can change the shell command that TotalView uses to launch the Visualizer by
editing the Visualizer launch command. (In most cases, the only reasons you’d do
this is if you’re having path problems or you’re running a different visualizer.) You
could also change what’s entered here so that you can view this information at an-
other time. Here’s an example:

cat > your_file

FIGURE 100: File > Preferences Launch Strings Page
166 TotalView Users Guide Version 6.2

Visualizing Programs and Data

Using the Visualizer to Display Array Data
Later, you can visualize this information using either of the following commands:

visualize –persist < your_file
visualize –file your_file

You can preset the Visualizer launch options by setting X resources. These
resources are described on our Web site. For more information, go to
www.etnus.com/Support/docs/.

Data Types That TotalView Can Visualize
The data selected for visualization is called a dataset. Each dataset is tagged with a
TotalView-generated numeric identifier that lets the Visualizer know whether it is
seeing a new dataset or an update to an existing dataset. TotalView treats stack
variables at different recursion levels or call paths as different datasets.

TotalView can visualize one- and two-dimensional arrays of character, integer, or
floating-point data. If an array has more than two dimensions, you can visualize
part of it using an array slice that creates a subarray having fewer dimensions.
Figure 101 shows a three-dimensional variable sliced into two dimensions by se-
lecting a single index in the middle dimension.

Viewing Data
Different datasets can require different views to display their data. For example, a
graph is more suitable for displaying one-dimensional datasets or two-dimensional

FIGURE 101: A Three-Dimensional Array Sliced into Two Dimensions
Version 6.2 TotalView Users Guide 167

7
Visualizing Programs and Data

Using the Visualizer to Display Array Data
datasets if one of the dimensions has a small extent; however, a surface view is bet-
ter for displaying a two-dimensional dataset.

When TotalView launches the Visualizer, one of the following actions will occur:

g If a Data Window is currently displaying the dataset, the Visualizer raises it to the
top of the desktop. If the window was minimized, the Visualizer restores it.

g If you haven’t visualized the dataset in this session, the Visualizer chooses a
method based on how well your dataset matches what is best shown for each
kind of visualization method. You can enable and disable this feature from the
Options menu in the Visualizer’s Directory Window.

g If you’ve previously visualized a dataset but you’ve killed its window, the Visual-
izer creates a new Data Window by using the most recent visualization method.

Visualizing Data Manually

Before you can visualize an array, you must:

g Open a Variable Window for the array’s data.

g Stop program execution where the array’s values are set to what you want them
to be when they are visualized.

Figure 102 shows an Variable Window containing an array.

You can restrict the data being visualized by editing the Type and Slice fields. For
example, editing the Slice fields limits the amount of data being visualized. (See

FIGURE 102: Variable Window
168 TotalView Users Guide Version 6.2

Visualizing Programs and Data

Using the Visualizer to Display Array Data
“Displaying Array Slices” on page 319.) Limiting the amount increases the Visualizer’s
speed.

After selecting the Variable Window’s Tools > Visualize command, the Visualizer
begins executing and then creates its window. The data sent to the Visualizer isn’t
automatically updated as you step through your program. Instead, you must explic-
itly update the display by reentering the Tools > Visualize command.

TotalView can visualize laminated variables. (See “Visualizing a Laminated Variable Win-
dow” on page 336.) The process or thread index will be one of the visualized data’s
dimensions. This means that you can only visualize scalar or vector information. If
you don’t want the process or thread index to be a dimension, use a nonlaminated
display.

Visualizing Data Programmatically

TotalView’s $visualize function allows you add visualization to expressions in evalu-
ation action points or with expressions entered in the Tools > Evaluate Window. If
you enter this function within an expression, TotalView will interpret rather than
compile the expression, which can greatly decrease performance. See “Defining
Evaluation Points and Conditional Breakpoints” on page 354 for information about com-
piled and interpreted expressions. Adding this function also lets you visualize sev-
eral different variables from a single expression or evaluation point.

Using $visualize in an evaluation point lets you animate the changes that occur in
your data because the Visualizer will update the array’s display every time TotalView
reaches the evaluation point. Here’s this function’s syntax:

$visualize (array [, slice_string])

The array argument names the dataset being visualized. The optional slice_string
argument is a quoted string defining a constant slice expression that modifies the
array parameter’s dataset.

Here are six examples showing how you can use this function. Notice that the ar-
ray’s dimension ordering differs in C and in Fortran.
Version 6.2 TotalView Users Guide 169

7
Visualizing Programs and Data

Using the Visualizer to Display Array Data
C $visualize(my_array);

$visualize (my_array,”[::2][10:15]”);

$visualize (my_array,”[12][:]”);

Fortran $visualize (my_array)

$visualize (my_array,’(11:16,::2)’)

$visualize (my_array,’(:,13)’)

The first example in each programming language group visualizes the entire array.
The second example selects every second element in the array’s major dimension;
it also clips the minor dimension to all elements in the range. The third example
reduces the dataset to a single dimension by selecting one subarray.

You may need to cast your data so that TotalView will know what the array’s dimen-
sions are. Here’s a C function declaration that passes a two-dimensional array pa-
rameter. Notice that it does not specify the major dimension’s extent.

void my_procedure (double my_array[][32])
{ /* procedure body */ }

Here’s how you can cast the array so that TotalView can visualize it. For example:

$visualize (*(double[32][32]*)my_array);

Sometimes, it’s hard to know what to specify. You can quickly refine array and slice
arguments, for example, by entering $visualize into the Tools > Evaluate Dialog
Box. When you select the Evaluate button, you’ll quickly see the result. You can
even use this technique to display several arrays simultaneously.

Using the Visualizer

The Visualizer uses two types of windows:

g Data Windows
These are the windows that display your data. The commands in a Data Window
let you set viewing options and change the way the Visualizer displays your data.

g A Directory Window
This window lists the datasets that you can visualize. Use this window to set glo-
bal options and to create views of your datasets. Commands in this window let
you obtain different views of the same data by opening more than one Data Win-
dow.
170 TotalView Users Guide Version 6.2

Visualizing Programs and Data

Using the Visualizer to Display Array Data
The top window in Figure 103 on page 171 is a Directory Window. The two
remaining windows show a surface and a graph view.

Directory Window
The Directory Window contains a list of the datasets you can display. You can select
a dataset by clicking on it. Double-clicking on the dataset tells the Visualizer to dis-
play it. While you can display multiple datasets, you can only select one dataset at
a time.

The View menu lets you select Graph or Surface visualization. Whenever TotalView
sends a new dataset to the Visualizer, the Visualizer updates its dataset list. To de-

FIGURE 103: Sample Visualizer Windows
Version 6.2 TotalView Users Guide 171

7
Visualizing Programs and Data

Using the Visualizer to Display Array Data
lete a dataset from the list, click on it, display the File menu, and then select
Delete. (It’s usually easier to just close the Visualizer.)

Here are the commands contained in the Directory Window’s menu bar:

File > Delete Deletes the currently selected dataset. It removes the dataset
from the dataset list and destroys the Data Windows display-
ing it.

File > Exit Closes all windows and exits the Visualizer.

View > Graph Creates a new Graph Window; see “Using the Graph Window” on
page 173 for more detail.

View > Surface Creates a new Surface Window; see “Using the Surface Window”
on page 177 for more detail.

Options > Auto Visualize
This item is a toggle; when enabled, the Visualizer automati-
cally visualizes new datasets as they are read. Typically, this
option is left on. If, however, you have large datasets and need
to configure how the Visualizer displays it, you may want to
disable this option.

Data Windows
Data Windows display graphic images of your data. Figure 104 on page 173 shows
a surface view and a graph view. Every Data Window contains a menu bar and a
drawing area. The Data Window title is its dataset identification.

The Data Window menu commands are as follows:

File > Close Closes the Data Window.

File > Delete Deletes the Data Window’s dataset from the dataset list. This
also destroys other Data Windows viewing the dataset.

File > Directory Raises the Directory Window to the front of the desktop. If you
have minimized the Directory Window, the Visualizer restores
it.

File > New Base Window
Creates a new Data Window having the same visualization
method and dataset as the current Data Window.

File > Options Pops up a window of viewing options.
172 TotalView Users Guide Version 6.2

Visualizing Programs and Data

Using the Visualizer to Display Array Data
The drawing area displays the image of your data. You can interact with the drawing
area to alter the view of your data. For example, if the Visualizer is showing a sur-
face, you can rotate the graph to view it from different angles. You can also get the
value and indices of the dataset element nearest the cursor by clicking on it. A pop-
up window displays the information. (See Figure 105 on page 174.)

Using the Graph Window

The Graph Window displays a two-dimensional graph of one- or two-dimensional
datasets. If the dataset is two-dimensional, the Visualizer displays multiple graphs.
When you first create a Graph Window on a two-dimensional dataset, the Visualizer
uses the dimension with the larger number of elements for the X axis. It then draws
a separate graph for each subarray having the smaller number of elements. If you
don’t like this choice, you can transpose the data.

NOTE You probably don’t want to use a graph to visualize two-dimensional datasets with
large extents in both dimensions, as the display will be very cluttered.

FIGURE 104: Sample Visualizer Data Windows
Version 6.2 TotalView Users Guide 173

7
Visualizing Programs and Data

Using the Visualizer to Display Array Data
You can display graphs with markers for each element of the dataset, with lines con-
necting dataset elements, or with both lines and markers as shown in Figure 106
on page 175. See “Displaying Graphs” on page 174 for more details. Multiple graphs
are displayed in different colors. The X axis of the graph is annotated with the indi-
ces of the long dimension. The Y axis shows you the data value.

You can scale and translate the graph, or pop up a window displaying the indices
and values for individual dataset elements. See “Manipulating Graphs” on page 176
for details.

Displaying Graphs
The File >Options Dialog Box lets you control how the Visualizer displays the
graph. (See Figure 107 on page 175.)

FIGURE 105: Rotating and Querying
174 TotalView Users Guide Version 6.2

Visualizing Programs and Data

Using the Visualizer to Display Array Data
Here’s what the check boxes in this dialog box mean.

Lines If this is set, the Visualizer displays lines connecting dataset el-
ements.

Points If this is set, the Visualizer displays markers for dataset ele-
ments.

Transpose If this is set, the Visualizer inverts the X and Y axis of the dis-
played graph.

FIGURE 106: Visualizer Graph Data Window

FIGURE 107: Graph Options Dialog Box
Version 6.2 TotalView Users Guide 175

7
Visualizing Programs and Data

Using the Visualizer to Display Array Data
Manipulating Graphs
You can manipulate the way the Visualizer displays a graph by using the following
actions:

Scale Press the Control key and hold down the middle mouse but-
ton. Move the mouse down to zoom in on the center of the
drawing area, or up to zoom out.

Translate Press the Shift key and hold down the middle mouse button.
Moving the mouse drags the graph.

Zoom Press the Control key and hold down the left mouse button.
Drag the mouse button to create a rectangle that encloses an
area. The Visualizer scales the graph to fit the drawing area.

Reset View Select View > Reset to reset the display to its initial state.

Query Hold down the left mouse button near a graph marker. A win-
dow pops up displaying the dataset element’s indices and
value.

Figure 108 shows a graph view of two-dimensional random data created by select-
ing Points and clearing Lines in the Data Window’s Graph Options Dialog Box.

FIGURE 108: Display of Random Data
176 TotalView Users Guide Version 6.2

Visualizing Programs and Data

Using the Visualizer to Display Array Data
Using the Surface Window

The Surface Window displays two-dimensional datasets as a surface in two or three
dimensions. The dataset’s array indices map to the first two dimensions (X and Y
axes) of the display. Figure 109 shows a two-dimensional map, where the dataset
values are shown using only the Zone option. (This demarcates ranges of element
values.) For a zone map with contour lines, turn the Zone and Contour settings on
and Mesh and Shade off.

You can display random data by selecting only the Zone setting and turning Mesh,
Shade, and Contour off. The display shows where the data is located, and you can
click on the display to get the values of the data points.

Figure 110 on page 178 shows a three-dimensional surface that maps element val-
ues to the height (Z axis).

Displaying Surface Data
The Surface Window’s File > Options command lets you control how the Visualizer
displays the graph. (See Figure 111 on page 178.)

FIGURE 109: Two-Dimensional Surface Visualizer Data Display
Version 6.2 TotalView Users Guide 177

7
Visualizing Programs and Data

Using the Visualizer to Display Array Data
This dialog box has the following choices:

Mesh If this option is set, the Visualizer displays the surface as a
three dimensional mesh, with the X-Y grid projected onto the
surface. If you don’t set this or the Shade option, the Visual-
izer displays the surface in two dimensions. (See Figure 109.)

Shade If this option is set, the Visualizer displays the surface in three
dimensions and shaded either in a “flat” color to differentiate
the top and bottom sides of the surface, or in colors corre-
sponding to the value if the Zone option is also set. When nei-

FIGURE 110: Three-Dimensional Surface Visualizer Data Display

FIGURE 111: Surface Options Dialog Box
178 TotalView Users Guide Version 6.2

Visualizing Programs and Data

Using the Visualizer to Display Array Data
ther this nor the Mesh option are set, the Visualizer displays
the surface in two dimensions. (See Figure 109.)

Contour If this option is set, the Visualizer displays contour lines indi-
cating ranges of element values.

Zone If this option is set, the Visualizer displays the surface in colors
showing ranges of element values.

Auto Reduce If this option is set, the Visualizer derives the displayed surface
by averaging over neighboring elements in the original dataset.
This speeds up visualization by reducing the resolution of the
surface. Clear this option if you want to accurately visualize all
dataset elements.

The Auto Reduce option allows you to choose between view-
ing all your data points—which takes longer to appear in the
display—or viewing the averaging of data over a number of
nearby points.

You can reset the viewing parameters to those used when the Visualizer first came
up by selecting the View > Reset command, which restores all translation, rota-
tion, and scaling to its initial state and enlarges the display slightly.

Manipulating Surface Data
The following commands change the display or give you information about it:

Query Hold down the left mouse button near the surface. A window
pops up displaying the nearest dataset element’s indices and
value.

Rotate Hold down the middle mouse button and drag the mouse to
freely rotate the surface. You can also press the X, Y, or Z keys
to select a single axis of rotation. The Visualizer lets you rotate
the surface in two dimensions simultaneously.

While you’re rotating the surface, the Visualizer displays a wire-
frame bounding box of the surface and moves it as your
mouse moves.

Scale Press the Control key and hold down the middle mouse but-
ton. Move the mouse down to zoom in on the center of the
drawing area, or up to zoom out.
Version 6.2 TotalView Users Guide 179

7
Visualizing Programs and Data

Using the Visualizer to Display Array Data
Translate Press the Shift key and hold down the middle mouse button.
Moving the mouse drags the surface.

Zoom Press the Control key and hold down the left mouse button.
Drag the mouse button to create a rectangle that encloses the
area of interest. The Visualizer then translates and scales the
area to fit the drawing area. See Figure 112 on page 181.

Launching the Visualizer from the Command Line

To start the Visualizer from the shell, use the following syntax:

visualize [–file filename | –persist]

where:

–file filename Reads data from filename instead of reading from standard in-
put.

–persist Continues to run after encountering an EOF on standard in-
put. If you don’t use this option, the Visualizer exits as soon as
it reads all of the data.

By default, the Visualizer reads its datasets from standard input and exits when it
reads an EOF. When started by TotalView, the Visualizer reads its data from a pipe,
ensuring that the Visualizer exits when TotalView does. If you want the Visualizer to
continue to run after it exhausts all input, invoke it by using the –persist option.

If you want to read data from a file, invoke the Visualizer with the –file option:

visualize –file my_data_set_file

The Visualizer reads all the datasets in the file. This means that the images you see
represent the last versions of the datasets in the file.

The Visualizer supports the generic X toolkit command-line options. For example,
you can start the Visualizer with the Directory Window minimized by using the
–iconic option. Your system manual page for the X server or the X WINDOW SYSTEM
USER’S GUIDE by O’Reilly & Associates lists the generic X command-line options in
detail.

You can also customize the Visualizer by setting X resources in your resource files or
on the command line with the –xrm resource_setting option. The available re-
sources are described in “TotalView Command Syntax” in the TOTALVIEW REFERENCE
180 TotalView Users Guide Version 6.2

Visualizing Programs and Data

Using the Visualizer to Display Array Data
FIGURE 112: Zooming, Rotating, About an Axis
Version 6.2 TotalView Users Guide 181

7
Visualizing Programs and Data

Using the Visualizer to Display Array Data
GUIDE. Use of X resources to modify the default behavior of TotalView or the
TotalView Visualizer is described in greater detail on our Web site at www.et-
nus.com/Support/docs/xresources/XResources.html.
182 TotalView Users Guide Version 6.2

Part IV: Using the CLI
While other parts of this book deal with both the GUI and the CLI or with just the
GUI, the chapters in this part deal exclusively with the CLI. Most CLI commands must
have a process/thread focus for what they will be doing. See Chapter 11: “Using
Groups, Processes, and Threads” on page 239 for more information.

Chapter 8: Seeing the CLI at Work
While you can use the CLI as a stand-alone debugger, using the GUI is
usually easier. Where the CLI shines is in creating debugging functions
that are unique to your program or in automating repetitive tasks.
This chapter presents a few Tcl macros in which TotalView CLI com-
mands are embedded.

While most of these examples are simple, you are urged to, at a mini-
mum, skim over this information so you get a feel for what can be
done.

Chapter 9: Using the CLI
You can use TotalView’s CLI commands without knowing much about
Tcl, which is the approach taken in this chapter. Here you will read
about how to enter CLI commands and how the CLI and TotalView in-
teract with one another when used in a nongraphical way.
Version 6.2 TotalView Users Guide 183

184 TotalView Users Guide Version 6.2

Version 6.2
Chapter 8
Seeing the CLI at Work
The CLI is a command-line debugger that is completely integrated with TotalView. You
can use it and never use the TotalView GUI or you can use it and the GUI simultaneously.
Because the CLI is embedded within a Tcl interpreter, you can also create debugging
functions that exactly meet your needs. When you do this, you can use these functions in
the same way that you use TotalView’s built-in CLI commands.

This chapter contains a few macros that show how the CLI programmatically interacts
with your program and with TotalView. Reading a few examples without bothering too
much with details will give you an appreciation for what the CLI can do and how you can
use it. As you will see, you really need to have a basic knowledge of Tcl before you can
make full use of all CLI features.

The chapter presents a few macros. In each macro, all Tcl commands that are unique to
the CLI are displayed in bold. The macros in this chapter are for:

g “Setting the EXECUTABLE_PATH State Variable” on page 185
g “Initializing an Array Slice” on page 187
g “Printing an Array Slice” on page 187
g “Writing an Array Variable to a File” on page 189
g “Automatically Setting Breakpoints” on page 189

Setting the EXECUTABLE_PATH State Variable

The following macro recursively descends through all directories starting at a loca-
tion that you enter. (This is indicated by the root argument.) The macro will ignore
directories named in the filter argument. The result is then set as the value of the
CLI EXECUTABLE_PATH state variable.
TotalView Users Guide 185

8
Seeing the CLI at Work

Setting the EXECUTABLE_PATH State Variable
Usage:
#
rpath [root] [filter]
#
If root is not specified, start at the current
directory. filter is a regular expression that removes
unwanted entries. If it is not specified, the macro
automatically filters out CVS/RCS/SCCS directories.
#
The TotalView search path is set to the result.

proc rpath {{root "."} {filter "/(CVS|RCS|SCCS)(/|$)"}} {

Invoke the UNIX find command to recursively obtain a
list of all directory names below “root”.
set find [split [exec find $root –type d –print] \n]

set npath ""

Filter out unwanted directories.
foreach path $find {

if {! [regexp $filter $path]} {
append npath “:”
append npath $path

}
}

Tell TotalView to use it.
dset EXECUTABLE_PATH $npath

}

In this macro, the last statement sets the EXECUTABLE_PATH state variable. This is
the only statement that is unique to the CLI. All other statements are standard Tcl.

The dset command, like most interactive CLI commands, begins with the letter d.
(The dset command is only used in assigning values to CLI state variables. In con-
trast, values are assigned to Tcl variables by using the standard Tcl set command.)
186 TotalView Users Guide Version 6.2

Seeing the CLI at Work

Initializing an Array Slice
Initializing an Array Slice

The following macro initializes an array slice to a constant value:

array_set (var lower_bound upper_bound val) {
for {set i $lower_bound} {$i <= $upper_bound} {incr i} {

dassign $var\($i) $val
}

}

The CLI dassign command assigns a value to a variable. In this case, it is setting the
value of an array element. Here is how you use this function:

d1.<> dprint list3
list3 = {

(1) = 1 (0x0000001)
(2) = 2 (0x0000001)
(3) = 3 (0x0000001)

}
d1.<> array_set list 2 3 99
d1.<> dprint list3
list3 = {

(1) = 1 (0x0000001)
(2) = 99 (0x0000063)
(3) = 99 (0x0000063)

}

Printing an Array Slice

The following macro prints a Fortran array slice. This macro, like other ones shown
in this chapter, relies heavily on Tcl and uses unique CLI commands sparingly.

proc pf2Dslice {anArray i1 i2 j1 j2 {i3 1} {j3 1} \
{width 20}} {

for {set i $i1} {$i <= $i2} {incr i $i3} {
set row_out ""
for {set j $j1} {$j <= $j2} {incr j $j3} {

set ij [capture dprint $anArray\($i,$j\)]
set ij [string range $ij \

[expr [string first "=" $ij] + 1] end]
set ij [string trimright $ij]
if {[string first "-" $ij] == 1} {

set ij [string range $ij 1 end]}
Version 6.2 TotalView Users Guide 187

8
Seeing the CLI at Work

Printing an Array Slice
append ij " "
append row_out " " \

[string range $ij 0 $width] " "
}
puts $row_out

}
}

NOTE The CLI’s dprint command lets you specify a slice. For example: dprint a(1:4,1:4).

After invoking this macro, the CLI prints a two-dimensional slice (i1:i2:i3, j1:j2:j3)
of a Fortran array to a numeric field whose width is specified by the width argu-
ment. This width doesn’t include a leading minus (-) sign.

All but one line is standard Tcl. This line uses the dprint command to obtain the
value of one array element. This element’s value is then captured into a variable.
The CLI capture command allows a value that is normally printed to be sent to a
variable. For information on the difference between values being displayed and val-
ues being returned, see “CLI Output” on page 200.

Here are several examples:

d1.<> pf2Dslice a 1 4 1 4
 0.841470956802 0.909297406673 0.141120001673-0.756802499294
 0.909297406673-0.756802499294-0.279415488243 0.989358246326
 0.141120001673-0.279415488243 0.412118494510-0.536572933197
-0.756802499294 0.989358246326-0.536572933197-0.287903308868
d1.<> pf2Dslice a 1 4 1 4 1 1 17
 0.841470956802 0.909297406673 0.141120001673-0.756802499294
 0.909297406673-0.756802499294-0.279415488243 0.989358246326
 0.141120001673-0.279415488243 0.412118494510-0.536572933197
-0.756802499294 0.989358246326-0.536572933197-0.287903308868
d1.<> pf2Dslice a 1 4 1 4 2 2 10
 0.84147095 0.14112000
 0.14112000 0.41211849
188 TotalView Users Guide Version 6.2

Seeing the CLI at Work

Writing an Array Variable to a File
d1.<> pf2Dslice a 2 4 2 4 2 2 10
-0.75680249 0.98935824
 0.98935824-0.28790330
d1.<>

Writing an Array Variable to a File

There are many times when you would like to save the value of an array so that you
can analyze its results at a later time. The following macro writes array values to a
file.

proc save_to_file {var fname} {
set values [capture dprint $var]
set f [open $fname w]

puts $f $values
close $f

}

The following shows how you might use this macro. Notice that using the exec
command lets cat display the file that was just written.

d1.<> dprint list3
list3 = {

(1) = 1 (0x00000001)
(2) = 2 (0x00000002)
(3) = 3 (0x00000003)

}
d1.<> save_to_file list3 foo
d1.<> exec cat foo
list3 = {

(1) = 1 (0x00000001)
(2) = 2 (0x00000002)
(3) = 3 (0x00000003)

}
d1.<>

Automatically Setting Breakpoints

In many cases, your knowledge of what a program is doing lets you make predic-
tions as to where problems will occur. The following CLI macro parses comments
Version 6.2 TotalView Users Guide 189

8
Seeing the CLI at Work

Automatically Setting Breakpoints
that you can include within a source file and, depending on the comment’s text,
sets a breakpoint or an evaluation point.

Immediately following this listing is an excerpt from a program that uses this macro.

make_actions: Parse a source file, and insert
evaluation and breakpoints according to comments.
#
proc make_actions {{filename ““}} {

if {$filename == ““} {
puts “You need to specify a filename”
error “No filename”

}

Open the program’s source file and initialize a
few variables.

set fname [set filename]
set fsource [open $fname r]
set lineno 0
set incomment 0

Look for “signals” that indicate the kind of
action point; they are buried in the comments.

while {[gets $fsource line] != –1} {
incr lineno
set bpline $lineno

Look for a one-line evaluation point. The
format is ... /* EVAL: some_text */.
The text after EVAL and before the “*/” in
the comment is assigned to “code”.

if [regexp “/* EVAL: *(.*)*/” $line all code] {
dbreak $fname\#$bpline –e $code
continue

}

Look for a multiline evaluation point.
if [regexp “/* EVAL: *(.*)” $line all code] {

Append lines to “code”.
while {[gets $fsource interiorline] != –1} {

incr lineno
190 TotalView Users Guide Version 6.2

Seeing the CLI at Work

Automatically Setting Breakpoints
Tabs will confuse dbreak.
regsub –all \t $interiorline \

“ “ interiorline

If “*/” is found, add the text to “code”,
then leave the loop. Otherwise, add the
text, and continue looping.
if [regexp “(.*)*/” $interiorline \

all interiorcode]{
append code \n $interiorcode
break

} else {
append code \n $interiorline

}
}
dbreak $fname\#$bpline –e $code
continue

}
Look for a breakpoint.

if [regexp “/* STOP: .*” $line] {
dbreak $fname\#$bpline
continue

}
Look for a command to be executed by Tcl.

if [regexp “/* *CMD: *(.*)*/” $line all cmd] {
puts “CMD: [set cmd]”
eval $cmd

}
}
close $fsource

}

The only similarity between this example and the previous three is that almost all of
the statements are Tcl. The only purely CLI commands are the instances of the
dbreak command that sets evaluation points and breakpoints.

The following excerpt from a larger program shows how you would embed com-
ments within a source file that would be read by the next macro.
Version 6.2 TotalView Users Guide 191

8
Seeing the CLI at Work

Automatically Setting Breakpoints
...
struct struct_bit_fields_only {

unsigned f3 : 3;
unsigned f4 : 4;
unsigned f5 : 5;
unsigned f20 : 20;
unsigned f32 : 32;

} sbfo, *sbfop = &sbfo;
...
int main()
{

struct struct_bit_fields_only *lbfop = &sbfo;
...

int i;
int j;
sbfo.f3 = 3;
sbfo.f4 = 4;
sbfo.f5 = 5;
sbfo.f20 = 20;
sbfo.f32 = 32;

...
/* TEST: Check to see if we can access all the

values */
i=i; /* STOP: */
i=1; /* EVAL: if (sbfo.f3 != 3) $stop; */
i=2; /* EVAL: if (sbfo.f4 != 4) $stop; */
i=3; /* EVAL: if (sbfo.f5 != 5) $stop; */
...
return 0;

}

The make_actions macro reads a source file one line at a time. As it reads these
lines, the regular expressions look for comments that begin with /* STOP, /* EVAL,
and /* CMD. After parsing the comment, it sets a breakpoint at a stop line, an evalu-
ation point at an eval line, or executes a command at a cmd line.

Using evaluation points can be confusing because evaluation point syntax differs
from that of Tcl. In this example, the $stop command is a command contained in
TotalView (and the CLI). It is not a Tcl variable. In other cases, the evaluation state-
ments will be in the C or Fortran programming languages.
192 TotalView Users Guide Version 6.2

Version 6.2
Chapter 9
Using the CLI
The two components of the Command Line Interface (CLI) are the Tcl-based program-
ming environment and the commands added to the Tcl interpreter that allow you to
debug your program. This chapter looks at how these components interact and
describes how you specify processes, groups, and threads.

This chapter tends to emphasize interactive use of the CLI rather than using the CLI as a
programming language because many of the concepts that will be discussed are easier
to understand in an interactive framework. However, everything in this chapter can be
used in both environments.

Topics discussed in this chapter are:

g “Tcl and the CLI” on page 193
g “Starting the CLI” on page 196
g “CLI Output” on page 200
g “Command Arguments” on page 201
g “Using Namespaces” on page 202
g “Command and Prompt Formats” on page 203
g “Built-In Aliases and Group Aliases” on page 203
g “Effects of Parallelism on TotalView and CLI Behavior” on page 204
g “Controlling Program Execution” on page 206

Tcl and the CLI

The TotalView CLI is built within version 8.0 of Tcl, so TotalView’s CLI commands are
built into Tcl. This means that the CLI is not a library of commands that you can
bring into other implementations of Tcl. Because the Tcl you are running is the
TotalView Users Guide 193

9
Using the CLI

Tcl and the CLI
standard 8.0 version, the TotalView CLI supports all libraries and operations that
run using version 8.0 of Tcl.

Integrating CLI commands into Tcl makes them intrinsic Tcl commands. This lets
you enter and execute all CLI commands in exactly the same way as you enter and
execute built-in Tcl commands. As CLI commands are also Tcl commands, you can
embed Tcl primitives and functions within CLI commands and embed CLI com-
mands within sequences of Tcl commands.

For example, you can create a Tcl list that contains a list of threads, use Tcl com-
mands to manipulate that list, and then use a CLI command that operates on the
elements of this list. Or you create a Tcl function that dynamically builds the argu-
ments that a process will use when it begins executing.

The CLI and TotalView

The following figure illustrates the relationship between the CLI, the TotalView GUI,
the TotalView core, and your program:

The CLI and the GUI are components that communicate with the TotalView core,
which is what actually does the work. In this figure, the dotted arrow between the
GUI and the CLI indicates that you can invoke the CLI from the GUI. The reverse
isn’t true: you can’t invoke the GUI from the CLI.

In turn, the TotalView core communicates with the processes that make up your
program and receives information back from these processes, and passes them

FIGURE 113: The CLI and TotalView

CLI GUI

Core

Process 1
Thread 1

Thread 2

Process 2
Thread 1

Thread 2

Program being debugged

TotalView
Tcl
194 TotalView Users Guide Version 6.2

Using the CLI

Tcl and the CLI
back to the component that sent the request. If the GUI is also active, the core also
updates the GUI’s windows. For example, stepping your program from within the
CLI changes the PC in the Process Window, updates data values, and so on.

The CLI Interface

The way in which you interact with the CLI is by entering a CLI or Tcl command. (As
entering a Tcl command does exactly the same thing in the CLI as it does when in-
teracting with a Tcl interpreter, entering commands and the command environment
won’t be discussed here.) Typically, the effect of executing a CLI command is one or
more of the following:

g The CLI displays information about your program.

g A change takes place in your program’s state.

g A change takes place in the information that the CLI maintains about your
program.

After the CLI executes your command, it displays a prompt. Although CLI com-
mands are executed sequentially, commands executed by your program may not
be. For example, the CLI doesn’t require that your program be stopped when it
prompts for and performs commands. It only requires that the last CLI command
be complete before it can begin executing the next one. In many cases, the pro-
cesses and threads being debugged continue to execute after the CLI finished
doing what you’ve asked it to do.

Because actions are occurring constantly, state information and other kinds of mes-
sages that the CLI displays are usually mixed in with the commands that you type.
You may want to limit the amount of information TotalView displays by setting the
VERBOSE variable to WARNING or ERROR. (For more information, see the “Vari-
ables” chapter in the TOTALVIEW REFERENCE GUIDE.)

Pressing Ctrl+C while a CLI command is executing interrupts that CLI command or
executing Tcl macro. If the CLI is displaying its prompt, typing Ctrl+C stops execut-
ing processes.
Version 6.2 TotalView Users Guide 195

9
Using the CLI

Starting the CLI
Starting the CLI

You can start the CLI in two ways:

g You can start the CLI from within the TotalView window by selecting the Tools >
Command Line command in the Root and Process Windows. After selecting this
command, TotalView opens a window into which you can enter CLI commands.

g You can start the CLI directly from a shell prompt by typing totalviewcli. (This as-
sumes that the TotalView binary directory is in your path.)

Figure 114 is a snapshot of a CLI window that shows part of a program being
debugged.

If you have problems entering and editing commands, it could be because you
invoked the CLI from a shell or process that manipulates your stty settings. You can
eliminate these problems if you use the stty sane CLI command. (If the sane option
isn’t available, you will have to change values individually.)

If you start the CLI with the totalviewcli command, you can use all of the com-
mand-line options that you can use when starting TotalView except those that have
to do with the GUI. (In some cases, TotalView displays an error message if you try. In
others, it just ignores what you’ve done

FIGURE 114: CLI xterm Window
196 TotalView Users Guide Version 6.2

Using the CLI

Starting the CLI
Startup Example

Here is a very small CLI script:

#
source make_actions.tcl
#
dload fork_loop
dset ARGS_DEFAULT {0 4 –wp}
dstep
catch {make_actions fork_loop.cxx} msg
puts $msg

This script begins by loading and interpreting the make_actions.tcl file, which was
described in Chapter 8, “Seeing the CLI at Work” on page 185. It then loads the
fork_loop executable, sets its default startup arguments, and then steps one
source-level statement.

If you stored this in a file named fork_loop.tvd, here is how you would tell
TotalView to start the CLI and execute this file:

totalviewcli –s fork_loop.tvd

Information on TotalView’s command-line options is in the “TotalView Command Syn-
tax” chapter of the TOTALVIEW REFERENCE GUIDE.

The following example places a similar set of commands in a file that you would
invoke from the shell:

#!/bin/sh
Next line exec. by shell, but ignored by Tcl because: \

exec totalviewcli –s "$0" "$@"
#
source make_actions.tcl
#
dload fork_loop
dset ARGS_DEFAULT {0 4 –wp}
dstep
catch {make_actions fork_loop.cxx} msg
puts $msg

Notice that the only difference is the first few lines in the file. In the second line, the
shell ignores the backslash continuation character while Tcl processes it. This
means that the shell will execute the exec command while Tcl will ignore it.
Version 6.2 TotalView Users Guide 197

9
Using the CLI

Starting the CLI
Starting Your Program

The CLI lets you start debugging operations in several ways. To execute your pro-
gram from within the CLI, enter a dload command followed by the drun command.
The following example uses the totalviewcli command to start the CLI. This is fol-
lowed by dload and drun commands. As this was not the first time the file was run,
breakpoints exist from a previous session.

NOTE In this listing, the CLI prompt is “d1.<>”. The information preceding the “>” symbol
indicates the processes and threads upon which the current command acts. The prompt is
discussed in “Command and Prompt Formats” on page 203.

% totalviewcli
Copyright 1999-2002 by Etnus, LLC. ALL RIGHTS RESERVED.
Copyright 1999 by Etnus, Inc.
Copyright 1989-1996 by BBN Inc.
d1.<> dload arraysAlpha #load the arraysAlpha program
1
d1.<> dactions # Show the action points
No matching breakpoints were found
d1.<> dlist –n 10 75

75 real16_array (i, j) = 4.093215 * j+2
76 #endif
77 26 continue
78 27 continue
79
80 do 40 i = 1, 500
81 denorms(i) = x'00000001'
82 40 continue
83 do 42 i = 500, 1000
84 denorms(i) = x'80000001'

d1.<> dbreak 80 # Add two action points
1
d1.<> dbreak 83
2
d1.<> drun # Run the program to the action point

This two-step operation of loading and then running allows you to set action points
before execution begins. It also means that you can execute a program more than
once. At a later time, you can use the drerun command to restart your program,
perhaps sending it new command-line arguments. In contrast, reentering the dload
command tells the CLI to reload the program into memory (for example, after edit-
198 TotalView Users Guide Version 6.2

Using the CLI

Starting the CLI
ing and recompiling the program). The dload command always creates new pro-
cesses. This means that you’ll get a new process each time and the old one will still
be around.

The dkill command terminates one or more processes of a program started by us-
ing dload, drun, or drerun. The following example continues where the previous
example left off:

d1.<> dkill # kill process
d1.<> drun # runs arraysLINUX from start
d1.<> dlist –e –n 3 # show lines about current spot

79
80@> do 40 i = 1, 500
81 denorms(i) = x'00000001'

d1.<> dwhat master_array # Tell me about master_array
In thread 1.1:
Name: master_array; Type: integer(100); Size: 400 bytes;

Addr: 0x140821310
 Scope: ##arraysAlpha#arrays.F#check_fortran_arrays

(Scope class: Any)
 Address class: proc_static_var (Routine static
variable)
d1.<> dgo # Start program running
d1.<> dwhat denorms # Tell me about denorms
In thread 1.1:
Name: denorms; Type: <void>; Size: 8 bytes; Addr:

0x1408214b8
 Scope: ##arraysAlpha#arrays.F#check_fortran_arrays

(Scope class: Any)
 Address class: proc_static_var (Routine static

variable)
d1.<> dprint denorms(0) # Show me what’s stored
 denorms(0) = 0x0000000000000001 (1)
d1.<>

Because information is interleaved, you may not realize that the prompt has
appeared. It is always safe to use the Enter key to have the CLI redisplay its prompt.
If a prompt isn’t displayed after you press Enter, then you know that the CLI is still
executing.
Version 6.2 TotalView Users Guide 199

9
Using the CLI

CLI Output
CLI Output

A CLI command can either print its output to a window or return the output as a
character string. If the CLI executes a command that returns a string value, it also
prints the returned string. Most of the time, you won’t care about the difference be-
tween printing and returning-and-printing. Either way, the CLI displays information in
your window. And, in both cases, printed output is fed through a simple more pro-
cessor. (This is discussed in more detail in the next section.)

Here are two cases where it matters whether TotalView directly prints output or re-
turns and then prints it:

g When the Tcl interpreter executes a list of commands, TotalView only prints the
information returned from the last command. It doesn’t show information re-
turned by other commands.

g You can only assign the output of a command to a variable if the CLI returns a
command’s output. You can’t assign output that the interpreter prints directly to
a variable or otherwise manipulate it unless you save it using the capture com-
mand.

For example, the dload command returns the ID of the process object that was just
created. The ID is normally printed—unless, of course, the dload command
appears in the middle of a list of commands. For example:

{dload test_program;dstatus}

In this example, the CLI doesn’t display the ID of the loaded program since dload
was not the last command.

When information is returned, you can assign it to a variable. For example, the next
command assigns the ID of a newly created process to a variable:

set pid [dload test_program]

Because you can’t assign the output of the help command to a variable, the follow-
ing doesn’t work:

set htext [help]

This statement assigns an empty string to htext because help doesn’t return text; it
just prints it.
200 TotalView Users Guide Version 6.2

Using the CLI

Command Arguments
To capture the output of a command that prints its output, use the capture com-
mand. For example, here’s how to place help command output into a variable:

set htext [capture help]

NOTE You can only capture the output from commands. You can’t capture the informa-
tional messages displayed by the CLI that describe process state. If you are using the GUI,
TotalView also writes this information to the Root Window’s Log Pane. If it is being written
there, you can use the File > Save Pane command to write this information to a file.

“more” Processing

When the CLI displays output, it sends data through a simple more-like process. This
prevents data from scrolling off the screen before you view it. After you see the
MORE prompt, press Enter to see the next screen of data. If you type q (followed
by pressing the Enter key), the CLI discard any data it hasn’t yet displayed.

You can control the number of lines displayed between prompts by using the dset
command to set the LINES_PER_SCREEN CLI variable. (For more information, see
the TOTALVIEW REFERENCE GUIDE.)

Command Arguments

The default command arguments for a process are stored in the ARGS(num)
variable, where num is the CLI ID for the process. If you don’t set the ARGS(num)
variable for a process, the CLI uses the value stored in the ARGS_DEFAULT variable.
TotalView sets the ARGS_DEFAULT when you use the –a option when starting the
CLI or the GUI.

NOTE The –a option tells TotalView to pass everything that follows on the command line to
the program.

For example:

totalviewcli –a argument-1, argument-2, ...

To set (or clear) the default arguments for a process, you can use dset to modify the
ARGS() variables directly, or you can start the process with the drun command. For
example, here is how you can clear the default argument list for process 2:

dunset ARGS(2)
Version 6.2 TotalView Users Guide 201

9
Using the CLI

Using Namespaces
The next time process 2 is started, the CLI uses the arguments contained in
ARGS_DEFAULT.

You can also use the dunset command to clear the ARGS_DEFAULT variable. For
example:

dunset ARGS_DEFAULT

All commands (except drun) that can create a process—including dgo, drerun,
dcont, dstep, and dnext—pass the default arguments to the new process. The
drun command differs in that it replaces the default arguments for the process with
the arguments that are passed to it.

Using Namespaces

CLI interactive commands exist within the primary Tcl namespace (::). Some of the
TotalView state variables also reside in this namespace. Seldom used functions and
functions that are not primarily used interactively reside in other namespaces.
These namespaces also contain most TotalView state variables. (The variables that
appear in other namespaces are usually related to TotalView preferences. The
namespaces that TotalView uses are:

TV:: Contains commands and variables that you will use when cre-
ating functions. While they can be used interactively, this is not
their primary role.

TV::GUI:: Contains state variables that define and describe properties of
the user interface such as window placement, color, and the
like.

If you discover other namespaces beginning with TV, you have found a place con-
taining internal functions and variables. These objects can (and will) change and
disappear, so don’t use them. Also, don’t create namespaces that begin with TV, as
you could cause problems by interfering with built-in functions and variables.

The CLI’s dset command lets you set the value of these variables. You can have the
CLI display a list of these variables by specifying the namespace. For example:

dset TV::
202 TotalView Users Guide Version 6.2

Using the CLI

Command and Prompt Formats
Command and Prompt Formats

The appearance of the CLI prompt lets you know that the CLI is ready to accept a
command. This prompt lists the current focus, and then displays a greater-than
symbol (>) and a blank space. (The current focus is the processes and threads to
which the next command applies.) For example:

d1.<> The current focus is the default set for each command, focus-
ing on the first user thread in process 1.

g2.3> The current focus is process 2, thread 3; commands act on the
entire group.

t1.7> The current focus is thread 7 of process 1.

gW3.> All worker threads in the control group containing process 3.

p3/3 All processes in process 3, group 3.

You can change the prompt’s appearance by using the dset command to set the
PROMPT state variable. For example:

dset PROMPT “Kill this bug! > ”

Built-In Aliases and Group Aliases

Many CLI commands have an alias that allows you to abbreviate the command’s
name. (An alias is one or more characters that Tcl interprets as a command or com-
mand argument.)

NOTE The “alias” command, which is described in the TotalView Reference Guide, lets you
create your own aliases.

After a few minutes of entering CLI commands, you will quickly come to the conclu-
sion that it is much more convenient to use the command abbreviation. For exam-
ple, you could type:

dfocus g dhalt

(This command tells the CLI to halt the current group.) It is much easier to type:

f g h
Version 6.2 TotalView Users Guide 203

9
Using the CLI

Effects of Parallelism on TotalView and CLI Behavior
While less-used commands are often typed in full, a few commands are almost
always abbreviated. These command include dbreak (b), ddown (d), dfocus (f),
dgo (g), dlist (l), dnext (n), dprint (p), dstep (s), and dup (u).

The CLI also includes uppercase “group” versions of aliases for a number of com-
mands, including all stepping commands. For example, the alias for dstep is “s”; in
contrast, “S” is the alias for “dfocus g dstep”. (The first command tells the CLI to
step the process. The second steps the control group.)

There are two ways in which group aliases differ from the kind of group-level com-
mand that you would type:

g They do not work if the current focus is a list. The g focus specifier modifies the
current focus, and it can only be applied if the focus contains just one term.

g They always act on the group, no matter what width is specified in the current fo-
cus. Therefore, dfocus t S does a step-group command.

Effects of Parallelism on TotalView and CLI Behavior

A parallel program consists of some number of processes, each involving some
number of threads. Processes fall into two categories, depending on when they are
created:

g Initial process
A preexisting process from the normal run-time environment (that is, created
outside TotalView) or one that was created as TotalView loaded the program.

g Spawned process
A new process created by a process executing under the CLI’s control.

TotalView assigns an integer value to each individual process and thread under its
control. This process/thread identifier can be the system identifier associated with the
process or thread. However, it can be an arbitrary value created by the CLI. Process
numbers are unique over the lifetime of a debugging session; in contrast, thread
numbers are only unique while the process exists.

Process/thread notation lets you identify the component that a command targets.
For example, if your program has two processes, and each has two threads, four
threads exist:
204 TotalView Users Guide Version 6.2

Using the CLI

Effects of Parallelism on TotalView and CLI Behavior
Thread 1 of process 1
Thread 2 of process 1
Thread 1 of process 2
Thread 2 of process 2

You would identify the four threads as follows:

1.1—Thread 1 of process 1
1.2—Thread 2 of process 1
2.1—Thread 1 of process 2
2.2—Thread 2 of process 2

Kinds of IDs

Multithreaded, multiprocess, and distributed program contain a variety of IDs. Here
is some background on the kinds used in the CLI and TotalView:

System PID This is the process ID and is generally called the PID.

Debugger PID This is an ID created by TotalView that lets it identify pro-
cesses. It is a sequentially numbered value beginning at 1 that
is incremented for each new process. Note that if the target
process is killed and restarted (that is, you use the dkill and
drun commands), the debugger PID doesn’t change. The sys-
tem PID, however, changes since the operating system has
created a new target process.

System TID This is the ID of the system kernel or user thread. On some
systems (for example, AIX), the TIDs have no obvious meaning.
On other systems, they start at 1 and are incremented by 1 for
each thread.

TotalView thread ID
This is usually identical to the system TID. On some systems
(such as AIX where the threads have no obvious meaning),
TotalView uses its own IDs.

pthread ID This is the ID assigned by the Posix pthreads package. If this
differs from the system TID, it is a pointer value that points to
the pthread ID.
Version 6.2 TotalView Users Guide 205

9
Using the CLI

Controlling Program Execution
Controlling Program Execution

Knowing what’s going on and where you program is executing is simple in a serial
debugging environment. Your program is either stopped or running. When it is run-
ning, an event such as arriving at a breakpoint can occur. This event tells the debug-
ger to stop the program. Sometime later, you will tell the serial program to continue
executing. Multiprocess and multithreaded programs are more complicated. Each
thread and each process has its own execution state. When a thread (or set of
threads) triggers a breakpoint, TotalView must decide what it should do about the
other threads and processes. Some may stop; some may continue to run.

Advancing Program Execution

Debugging begins by entering a dload or dattach command. If you use the dload
command, you must use the drun command to start the program executing. These
three commands work at process level and you can’t use them to start an individual
threads. (This is also true for the dkill command.)

To advance program execution, you enter a command that causes one or more
threads to execute instructions. The commands are applied to a P/T set. (P/T sets
are discussed in Chapters 2 and 11.) Because the set doesn’t have to include all
processes and threads, you can cause some processes to be executed while hold-
ing others back. You can also advance program execution by increments, stepping
the program forward, and you can define the size of the increment. For example,
“dnext 3” executes the next three statements and then pauses what you’ve been
stepping.

Typically, debugging a program means that you have the program run, and then you
stop it and examine its state. In this sense, a debugger can be thought of as tool
that allows you to alter a program’s state in a controlled way. And debugging is the
process of stopping the process to examine its state. However, the term “stop” has
a slightly different meaning in a multiprocess, multithreaded program; in these pro-
grams, stopping means that the CLI holds one or more threads at a location until you
enter a command that tells them to start executing again.
206 TotalView Users Guide Version 6.2

Using the CLI

Controlling Program Execution
Action Points

Action points tell the CLI that it should stop a program’s execution. You can specify
four different kinds of action points:

g A breakpoint (see dbreak in the TOTALVIEW REFERENCE GUIDE) stops the process
when the program reaches a location in the source code.

g A watchpoint (see dwatch in the TOTALVIEW REFERENCE GUIDE) stops the process
when the value of a variable is changed.

g A barrier point (see dbarrier in the TOTALVIEW REFERENCE GUIDE), as its name sug-
gests, effectively prevents processes from proceeding beyond a point until all
other related processes arrive. This gives you a method for synchronizing the ac-
tivities of processes. (Note that you can only set a barrier on processes; you
can’t set then on individual threads.)

g An evaluation point (see dbreak in the TOTALVIEW REFERENCE GUIDE) lets you pro-
grammatically evaluate the state of the process or variable when execution
reaches a location in the source code. Evaluation points typically do not stop
the process; instead, they perform an action. In most cases, an evaluation point
stops the process when some condition that you specify is met.

NOTE Extensive information on action points can be found in Chapter 14, “Setting Action
Points” on page 337.

Each action point is associated with an action point identifier. You use these identifiers
when you need to refer to the action point. Like process and thread identifiers,
action point identifiers are assigned numbers as they are created. The ID of the first
action point created is 1. The second ID is 2, and so on. These numbers are never
reused during a debugging session.

The CLI and TotalView only let you assign one action point to a source code line,
but you can make this action point as complex as you need it to be. (Setting multi-
ple action points is required by debuggers that limit what you can do.)
Version 6.2 TotalView Users Guide 207

9
Using the CLI

Controlling Program Execution
208 TotalView Users Guide Version 6.2

Part V: Debugging
The chapters in this part of the TotalView Users Guide describe how you actually go
about debugging your programs. The preceding sections describe, for the most part,
what you need to do before you get started with TotalView. In contrast, the chapters in
this section are what TotalView is really about.

Chapter 10: Debugging Programs
Reading this chapter well help you find your way around your pro-
gram. It also tells you how to start it under TotalView’s control, and
the ways to step your program’s execution. Of course, it also tells
you how to halt, terminate, and restart your program.

Chapter 11: Using Groups, Processes, and Threads
The stepping information in Chapter 10 describes the commands
and the different kinds of stepping. In a multiprocess, multithreaded
program, you may need to finely control what is executing. This
chapter tells you how to do this.

Chapter 12: Examining and Changing Data
As your program executes, you will want to examine what the value
stored in a variable is. This chapter tells you how.

Chapter 13: Examining Arrays
Displaying the information in arrays presents special problems. This
chapter tells how TotalView solves these problems.

Chapter 14: Setting Action Points
TotalView’s action points let you control how your programs execute
and what happens when your program reaches statements that you
define as important. Action points also let you monitor changes to a
variable’s value.
Version 6.2 TotalView Users Guide 209

210 TotalView Users Guide Version 6.2

Version 6.2
Chapter 10
Debugging Programs
This chapter explains how to perform basic debugging tasks with TotalView. The topics
discussed are:

g “Searching and Looking Up Program Elements” on page 211
g “Viewing the Assembler Version of Your Code” on page 216
g “Editing Source Text” on page 218
g “Manipulating Processes and Threads” on page 219
g “Using Stepping Commands” on page 229
g “Executing to a Selected Line” on page 231
g “Displaying Thread and Process Locations” on page 232
g “Continuing with a Specific Signal” on page 233
g “Deleting Programs” on page 234
g “Restarting Programs” on page 235
g “Checkpointing Programs and Processes” on page 235

g “Setting the Program Counter” on page 236
g “Interpreting Status and Control Registers” on page 237

Searching and Looking Up Program Elements

TotalView provides several ways for you to navigate and find information in your
source file. Topics in this section are:

g “Searching for Text” on page 212

g “Looking for Functions and Variables” on page 212

g “Finding the Source Code for Functions” on page 213
TotalView Users Guide 211

10
Debugging Programs

Searching and Looking Up Program Elements
g “Finding the Source Code for Files” on page 215

g “Resetting the Stack Frame” on page 216

Searching for Text

You can search for text strings in most windows with the Edit > Find command. Af-
ter invoking this command, TotalView displays the dialog box shown in Figure 115.

Controls in this dialog box let you perform case-sensitive searches, continue
searching from the beginning of the file if the string isn’t found in the region begin-
ning at the currently selected line and ending at the last line of the file, and keep
the dialog box up between searches. You can also tell TotalView if it should search
towards the bottom of the file (Down) or the top (Up).

After you have found a string, you can find another instance of it by using the
Edit > Find Again command.

Looking for Functions and Variables

Having TotalView locate a variable or a function is usually easier than scrolling
through your sources to look for it. Do this with the View > Lookup Function and
View > Lookup Variable commands. Figure 116 on page 213 shows the dialog
box displayed by these commands.

If TotalView doesn’t find the name and it can find something similar, it displays a
dialog box containing the names of functions that could match. (See Figure 117.)

FIGURE 115: Edit > Find Dialog Box
212 TotalView Users Guide Version 6.2

Debugging Programs

Searching and Looking Up Program Elements
If the one you want is listed, click on its name and then, select OK to have it dis-
played in the Source Pane.

Finding the Source Code for Functions

The View > Lookup Function command lets you search for a function’s declara-
tion. Here’s the dialog box displayed after you select this command.

After locating your function, TotalView displays it in the Source Pane. If you didn’t
compile the function using –g, TotalView displays disassembled machine code.

FIGURE 116: View > Lookup Variable Dialog Box

FIGURE 117: Ambiguous Function Dialog Box

CLI EQUIVALENT: dlist function-name
Version 6.2 TotalView Users Guide 213

10
Debugging Programs

Searching and Looking Up Program Elements
When you want to return to the previous contents of the Source Pane, use the un-
dive icon located in the upper right corner of the Source Pane and just below the
Stack Frame Pane. In the following figure, a square surrounds the undive icon.

You can also use the View > Reset command to discard the dive stack so that the
Source Pane is displaying the PC it displayed when you last stopped execution.

The File > Edit Source command (see ““Editing Source Text” on page 218 for details)
lets you display a file in a text editor. The default editor is vi. However, TotalView will
use the editor named in an EDITOR environment variable or the editor you name in
the Source Code Editor field of the File > Preferences’s Launch Strings Page.

Another method of locating a function’s source code is to dive into a source state-
ment in the Source Pane that shows the function being called. After diving, you’ll
see the source.

Resolving Ambiguous Names
Sometimes the function name you specify is ambiguous. For example, you may
have specified the name of:

g A static function, and your program contains different versions of it.

FIGURE 118: View > Lookup Function Dialog Box

FIGURE 119: Undive/Dive Controls
214 TotalView Users Guide Version 6.2

Debugging Programs

Searching and Looking Up Program Elements
g A member function in a C++ program, and multiple classes have a member
function with that name.

g An overloaded function or a template function.

Figure 120 on page 215 shows the dialog box that TotalView displays when it
encounters an ambiguous function name. You can resolve the ambiguity by clicking
on the function you desire.

Finding the Source Code for Files

You can display a file’s source code by selecting the View > Lookup Function com-
mand and entering the file name in the dialog box shown in Figure 121 on
page 215.

FIGURE 120: Ambiguous Function Dialog Box

FIGURE 121: View > Lookup Function Dialog Box
Version 6.2 TotalView Users Guide 215

10
Debugging Programs

Viewing the Assembler Version of Your Code
If a header file contains source lines that produce executable code, you can enter
its name here.

Resetting the Stack Frame

After moving around your source code to look at what’s happening in different
places, you can return to the executing line of code for the current stack frame by
selecting the View > Reset command. This command places the PC arrow onto the
screen.

This command is also useful when you want to undo the effect of scrolling or when
you move to different locations using, for example, the View > Lookup Function
command.

If the program hasn’t started running, the View > Reset command displays the first
executable line in your main program. This is useful when you are looking at your
source code and want to get back to the first statement your program will execute.

Viewing the Assembler Version of Your Code

You can display your program in source form or as assembler. Here are the com-
mands that you can use:

Source code (Default)
Use the View > Source As > Source command.

Assembler code Use the View > Source As > Assembler command.

Both Source and assembler
Use the View > Source As > Both command.

The Source Pane divides into two parts. The left contains the
program’s source code and the right contains the assembler
version of this code. You can set breakpoints in either of these
panes. Note that setting an action point at the first instruction
after a source statement, is equivalent to setting it at that
source statement.
216 TotalView Users Guide Version 6.2

Debugging Programs

Viewing the Assembler Version of Your Code
The commands in the following table tell TotalView to display your assembler code
by using symbolic or absolute addresses:

NOTE You can also display assembler instructions in a Variable Window. For more informa-
tion, see “Displaying Machine Instructions” on page 290.

The following three figures illustrate the different ways TotalView can display assem-
bler code. In Figure 122 on page 217, the second column (the one to the right of
the line numbers) shows the absolute address location. The fourth column shows
references using absolute addresses.

This next figure shows information symbolically. The second column shows loca-
tions using functions and offsets.

The final “assembler” figure (see Figure 124 on page 218) shows the split Source
Pane, with one side showing the program’s source code and the other showing the
assembler version. In this example, the assembler is shown symbolically. How it is

Table 9: Assembler Code Display Styles

Command TotalView Shows
View > Assembler > By Address Absolute addresses for locations and

references; this is the default
View > Assembler > Symbolically Symbolic addresses (function names and

offsets) for locations and references

FIGURE 122: Address Only (Absolute Addresses)
Version 6.2 TotalView Users Guide 217

10
Debugging Programs

Editing Source Text
shown depends upon whether you’ve selected View > Assembler > By Address or
View > Assembler > Symbolically.

Editing Source Text

The File > Edit Source command lets you examine the current routine in a text edi-
tor. TotalView uses an editor launch string to determine how to start your editor.
TotalView expands this string into a command that TotalView sends to the sh shell.

FIGURE 123: Assembler Only (Symbolic Addresses)

FIGURE 124: Both Source and Assembler (Symbolic Addresses)
218 TotalView Users Guide Version 6.2

Debugging Programs

Manipulating Processes and Threads
The fields within the Launch Strings Page of the File > Preferences Window let you
name the editor and the way TotalView launches the editor. The online help for this
page contains information on setting this preference.

Manipulating Processes and Threads

Topics discussed in this section are:

g “Using the Toolbar to Select a Target” on page 219

g “Stopping Processes and Threads” on page 220

g “Updating Process Information” on page 221

g “Holding and Releasing Processes and Threads” on page 221

g “Examining Groups” on page 223

g “Displaying Groups” on page 224

g “Placing Processes into Groups” on page 225

g “Starting Processes and Threads” on page 225

g “Creating a Process Without Starting It” on page 226

g “Creating a Process by Single-Stepping” on page 227

g “Stepping and Setting Breakpoints” on page 227

Using the Toolbar to Select a Target

The Process Window’s toolbar has three groups of buttons. The first group, which is
a single pulldown list, defines the focus of the command selected in the second
group of the toolbar. The third group changes the process and thread being dis-
played. Figure 125 shows this toolbar.

FIGURE 125: The Toolbar
Version 6.2 TotalView Users Guide 219

10
Debugging Programs

Manipulating Processes and Threads
When you are doing something to a multi-process, multi-threaded program,
TotalView needs to know which processes and threads it should act upon. In the
CLI, you specify this target using the dfocus command. When using the GUI, you
specify the focus using this pulldown. For example, if you select Thread, and then
select the Step button, TotalView steps the current thread. In contrast, if you select
Process Workers and then select the Go button, TotalView tells all the processes
that are in the same workers group as the current thread (this thread is called the
thread of interest).

NOTE Chapter 11, “Using Groups, Processes, and Threads” on page 239 fully describes how
TotalView manages processes and threads. While TotalView gives you the ability to control the
precision your application requires, most applications do not need this level of interaction. In
almost all cases, using the controls in the toolbar gives you all the control you need.

Stopping Processes and Threads

To stop a group, process, or thread, select a Halt command from the Group,
Process, or Thread pulldown menu on the toolbar.

The three Halt commands differ in the scope of what they halt. In all cases,
TotalView uses the current thread (which is called the thread of interest or TOI) to
determine what else it will halt. For example, suppose you select Process > Halt.
This tells TotalView to determine the process in which the TOI is running. It will then
halt this process. Similarly, if you select Group > Share > Halt, TotalView deter-
mines what processes are in the share group the current thread participates in. It
then stops all of these processes.

NOTE For more information on the TOI, see “Defining the GOI, POI, and TOI” on page 239.

When you select the Halt button in the toolbar instead of the commands within the
menubar, TotalView decides what it should stop based on what is set in the two
toolbar pulldown lists.

CLI EQUIVALENT: dhalt
Halts a group, process, or thread. Setting the focus changes
the scope.
220 TotalView Users Guide Version 6.2

Debugging Programs

Manipulating Processes and Threads
After entering a Halt command, TotalView updates any windows that can be up-
dated. When you restart the process, execution continues from the point where
TotalView had stopped the process.

Updating Process Information

Normally, TotalView only updates information when the thread being executed
stops executing. You can force TotalView to update a window if you use the
Window > Update command. You’ll need to use this command if you want to see
what a variable’s value is while your program is executing.

NOTE When you use this command, TotalView momentarily stops execution so that it can
obtain the information it needs. It then restarts the thread.

Holding and Releasing Processes and Threads

When you are running a multiprocess or multithreaded program, there will be many
times when you will want to synchronize execution to the same statement. You can
do this manually using a hold command, or you can let TotalView do this by setting a
barrier point.

When a process or a thread is held, any command that it receives that tells it to exe-
cute are ignored. For example, assume that you place a hold on a process in a con-
trol group that contains three processes. After you select Group > Control > Go,
two of the three processes will resume executing. The held process ignores the Go
command.

At a later time, you will want to run whatever is being held. Do this using a Release
command. When you release a process or a thread, you are telling it that it can run.
But you still need to tell it to execute, which means that it is waiting to receive an
execution command such as Go, Out, or Step.

Manually holding and releasing processes and threads is useful in these instances:

g When you need to run a subset of the processes and threads. You can manually
hold all but the ones you want to run.
Version 6.2 TotalView Users Guide 221

10
Debugging Programs

Manipulating Processes and Threads
g When a process or thread is held at a barrier point and you want to run it without
first running all the other processes or threads in the group to that barrier. In this
case, you’d release the process or the thread manually and then run it.

TotalView can also hold a process or thread if it stops at a barrier breakpoint. You
can manually release a process or thread being held at a barrier breakpoint. See
“Barrier Points” on page 350 for more information on manually holding and releasing
barrier breakpoint.

When TotalView is holding a process, the Root and Process Windows display a held
indicator, which is the letter H. When TotalView is holding a thread, it displays the
letter h.

Here are four ways to hold or release a thread, process, or group of processes:

g You can hold a group of processes with the Group > Hold command.

g You can release a group of processes with the Group > Release command.

g You can toggle the hold/release state of a process by selecting and clearing the
Process > Hold command.

g You can toggle the hold/release state of a thread by selecting and clearing the
Thread > Hold command.

If a process or a thread is running when you enter a hold or release command,
TotalView stops the process or thread, and then holds it.

NOTE TotalView allows you to hold and release processes independently from threads.

Notice that the Process pulldown menu contains a Hold Threads and a Release
Threads command. While they appear to do the same thing, they are used in a
slightly different way. If you use Hold Threads on a multi-threaded process, you’ll be
placing a hold on all threads. This is seldom what you want. If you then uncheck the
the Threads > Hold command, TotalView allows you to release the one you want.
This is an easy way to select one or two threads when your program has a lot of

CLI EQUIVALENT: dhold and dunhold
Setting the focus changes the scope.
222 TotalView Users Guide Version 6.2

Debugging Programs

Manipulating Processes and Threads
threads. You can verify that you’re doing the right thing by looking at the thread’s
status in the Root Window’s Attached pane.

Examining Groups

When you debug a multiprocess program, TotalView adds processes to both a con-
trol and a share group as the process starts. (See Chapter 2, “Understanding
Threads, Processes, and Groups” on page 17 for information on groups.)

NOTE These groups are not related to either UNIX process groups or PVM groups.

Because a program can have more than one control group and more than one
share group, it decides where to place a process based on the type of system call
(fork() or execve()) that created or changed the process. The two types of process
groups are:

Control Group Includes the parent process and all related processes. A con-
trol group includes children that a process forks (processes
that share the same source code as the parent). It also in-
cludes forked children that subsequently call a function such
as execve(). That is, a control group can contain processes
that don’t share the same source code as the parent.

Control groups also include processes created in parallel pro-
gramming disciplines like MPI.

Share Group Is the set of processes in a control group that share the same
source code. Members of the same share group share action
points.

NOTE See Chapter 11, “Using Groups, Processes, and Threads” on page 239 for a complete
discussion of groups.

TotalView automatically creates share groups when your processes fork children
that call execve() or when your program creates processes that use the same code
as some parallel programming models such as MPI do.

CLI EQUIVALENT: dhold –thread
dhold –process
dunhold –thread
Version 6.2 TotalView Users Guide 223

10
Debugging Programs

Manipulating Processes and Threads
TotalView names processes according to the name of the source program. Here are
the naming rules it uses:

g It names the parent process after the source program.

g The name for forked child processes differs from the parent in that TotalView ap-
pends a numeric suffix (.n). If you’re running an MPI program, the numerical suffix
is the process’s rank in COMM_WORLD.

g If a child process calls execve() after it is forked, TotalView places a new execut-
able name within angle brackets (<>).

In Figure 126, assume that the generate process doesn’t fork any children, and
that the filter process forks two child process. Later, the first child forks another
child and then calls execve() to execute the expr program. In this figure, the middle
column shows the names that TotalView will use.

Displaying Groups

To display a list of process and thread groups, select the Root Window’s Groups
Tab. (See Figure 127.)

When you select a group in the top list pane, TotalView updates the bottom pane to
show the group’s members. After TotalView updates the bottom pane, you can dive
into anything shown there.

FIGURE 126: Example of Control Groups and Share Groups

Process Groups Process Names Relationship

filter
filter.1
filter.2
filter<expr>.1.1

generate

parent process #1
child process #1
child process #2
grandchild process #1

parent process #2

Share Group 1
Control
Group 1

Share Group 2

Control
Group 2 Share Group 3

CLI EQUIVALENT: dptsets
224 TotalView Users Guide Version 6.2

Debugging Programs

Manipulating Processes and Threads
Placing Processes into Groups

TotalView uses your executable’s name to determine the share group the program
belongs to. If the path names are identical, it assumes they are the same program.
If the path names differ, TotalView assumes they are different even if the filename
within the path name is the same and will place them in different share groups.

Starting Processes and Threads

To start a process, go to the Process Window and select a Go command from the
Group, Process, or Thread pulldown menus.

After you select a Go command, TotalView decides what it will run based on the
current thread. It uses this thread, which is called the Thread of Interest (TOI), to
decide what other threads it should run. For example, if you enter Group >

FIGURE 127: Root Window: Groups Page

➊ Name of executable
➋ Type of process or thread group
➌ Select a group in the top pane to display members

in the bottom pane
➍ Group number

➋

➊

➌

➍

Version 6.2 TotalView Users Guide 225

10
Debugging Programs

Manipulating Processes and Threads
Workers > Go, TotalView continues all threads in the workers group associated
with this thread.

The commands you will use most often are Group > Go and Process > Go. The
Group > Go command creates and starts the current process and all other pro-
cesses in the multiprocess program. There are some limitations, however. TotalView
only resumes a process if it:

g Is not being held.

g Already exists and is stopped.

g Is at a breakpoint.

Using a Group > Go command on a process that’s already running starts the other
members of the process’s control group.

If the process hasn’t yet been created, a Go commands creates and starts it. Start-
ing a process means that all threads in the process resume executing unless you are
individually holding a thread.

NOTE TotalView disables the Thread > Go command if asynchronous thread control is
not available. If you enter a thread-level command in the CLI when asynchronous thread con-
trols aren’t available, TotalView will try to perform an equivalent action. For example, it will
continue a process instead of a thread.

For a single-process program, Process > Go and Group > Go are equivalent. For a
single-threaded process, Process > Go and Thread > Go are equivalent.

Creating a Process Without Starting It

The Process > Create command creates a process and stops it before the first
statement in your program executes. If you had linked a program with shared librar-
ies, TotalView allows the dynamic loader to map into these libraries. Creating a pro-
cess without starting it is useful when you need to:

CLI EQUIVALENT: dfocus g dgo
Abbreviation: G

CLI EQUIVALENT: dgo
226 TotalView Users Guide Version 6.2

Debugging Programs

Manipulating Processes and Threads
g Create watchpoints or change the values of global variables after a process is
created, but before it runs.

g Debug C++ static constructor code.

Creating a Process by Single-Stepping

The TotalView single-stepping commands allow you to create a process and run it
to a location in your programs. The single-stepping commands available from the
Process menu are as shown in the following table:

If a group-level or thread-level stepping command creates a process, the behavior
is the same as if it were a process-level command.

NOTE Chapter 11, “Using Groups, Processes, and Threads” on page 239 contains a detailed
discussion of setting the focus for stepping commands.

Stepping and Setting Breakpoints

Several of the single-stepping commands require that you select a source line or
machine instruction in the Source Pane. To select a source line, place the cursor
over the line and click your left mouse button. If you select a source line that has

CLI EQUIVALENT: dstepi
While there is no equivalent to the Process > Create com-
mand, executing dstepi produces the same effect.

Table 10: Creating a Process by Stepping

GUI Command CLI Command Creates the process and ...
Process > Step dfocus p dstep Runs it to the first line of the main() routine.
Process > Next dfocus p dnest Runs it to the first line of the main() routine;

this is the same as Process > Step.
Process >

Step Instruction
dfocus p dstepi Stops it before any of your program executes.

Process >
Next Instruction

dfocus p dnexti Runs it to the first line of the main() routine.
this is the same as Process > Step.

Process > Run To dfocus p duntil Runs it to the line or instruction selected in
the Process Window.
Version 6.2 TotalView Users Guide 227

10
Debugging Programs

Manipulating Processes and Threads
more than one instantiation, TotalView will try to do the right thing. For example, if
you select a line within a template so you can set a breakpoint on it, you’ll actually
set a breakpoint on all instantiations of the template. If this isn’t what you want,
you can use the Location button in the Action Point > Properties Dialog Box to
change which instantiations will have the breakpoints. (See Figure 128 on
page 228.)

If TotalView can’t figure out which instantiation to set a breakpoint at, it will display
its Ambiguous Line Dialog Box. (See Figure 129 on page 229.)

FIGURE 128: Action Point Properties and Address Dialog Boxes
228 TotalView Users Guide Version 6.2

Debugging Programs

Using Stepping Commands
Using Stepping Commands

While different programs have different requirements, the most common stepping
mode is to set group focus to Control and the target to Process or Group. You can
now select stepping commands from the Process or Group menus or use com-
mands in the toolbar.

Here are some things to remember about single-stepping commands:

g To cancel a single-step command, put the cursor in the Process Window and se-
lect Group > Halt or Process > Halt.

g If your program reaches a breakpoint while stepping over a function, TotalView
cancels the operation and your program stops at the breakpoint.

FIGURE 129: Ambiguous Addresses Dialog Box

CLI EQUIVALENT: dfocus g
dfocus p

CLI EQUIVALENT: dhalt
Version 6.2 TotalView Users Guide 229

10
Debugging Programs

Using Stepping Commands
g If you enter a source-line stepping command and the primary thread is executing
in a function that has no source-line information, TotalView performs an assem-
bler-level stepping command.

When TotalView steps through your code, it steps a line at a time. This means that if
you have more than one statement on a line, a step instruction executes all of the
instructions.

Stepping into Function Calls

The stepping commands execute one line in your program. If you are using the CLI,
you can use a numeric argument that indicates how many source lines TotalView
should step. For example, here’s the CLI instruction for stepping three lines:

dstep 3

If the source line or instruction contains a function call, TotalView steps into it. If
TotalView can’t find the source code and the function was compiled with –g, it dis-
plays the function’s machine instructions.

It is possible that you might not realize your program is calling a function. For ex-
ample, if you’ve overloaded an operator, you’ll step into the code that defines the
overloaded operator.

NOTE If the function being stepped into wasn’t compiled with –g, TotalView will always
step over the function.

The TotalView GUI has eight Step commands and eight Step Instruction com-
mands. These commands are located on the Group, Process, and Thread pull-
downs. The difference is the focus.

Stepping Over Function Calls

When you step over a function, TotalView stops execution when the primary thread
returns from the function and reaches the source line or instruction after the func-
tion call.

CLI EQUIVALENT: dfocus ... dstep
dfocus ... dstepi
230 TotalView Users Guide Version 6.2

Debugging Programs

Executing to a Selected Line
The TotalView GUI has eight Next commands that execute a single source line while
stepping over functions, and eight Next Instruction commands that execute a sin-
gle machine instruction while stepping over functions. These commands are on the
Group, Process, and Thread menus.

Executing to a Selected Line

If you don’t need to stop execution every time execution reaches a specific line,
you can tell TotalView to run your program to a selected line or machine instruction.
After selecting the line on which you want the program to stop, invoke one of
the eight Run To commands defined within the TotalView GUI. These commands
are on the Group, Process, and Thread menus.

Executing to a selected line is discussed in greater depth in Chapter 11, “Using
Groups, Processes, and Threads” on page 239.

If your program reaches a breakpoint while running to a selected line, TotalView
stops at that breakpoint.

If your program calls recursive functions, you can select a nested stack frame in the
Stack Trace Pane. When you do this, TotalView determines where to stop execution
by looking at:

g The frame pointer (FP) of the selected stack frame.

g The selected source line or instruction to determine.

CLI EQUIVALENT: dfocus ... dnext

dfocus ... dnexti

CLI EQUIVALENT: dfocus ... duntil

CLI EQUIVALENT: dup and ddown
Version 6.2 TotalView Users Guide 231

10
Debugging Programs

Displaying Thread and Process Locations
Executing to the Completion of a Function

You can step your program out of a function by using the Out commands. The eight
commands within the TotalView GUI are located on the Group, Process, and Thread
menus.

If the source line that is the goal of the Out operation has more than one statement,
TotalView will stop execution just after the routine from which it just emerged. For
example, suppose this is your source line:

routine1; routine2

Suppose you step into routine1, then use an Out command. While the PC arrow
hasn’t moved, the actual PC is just after routine1. This means that if you use a step
command, you will step into routine2.

TotalView’s PC arrow will not move, when the source line only has one statement
on it. The internal PC will, of course, have changed.

You can also return out of several functions at once, by selecting the routine in the
Stack Trace Pane that you want to go to, and then selecting an Out command.

If your program calls recursive functions, you can select a nested stack frame in the
Stack Trace Pane to indicate which instance you’ll be running out of.

Displaying Thread and Process Locations

You can see which processes and threads in the share group are at a location by se-
lecting a source line or machine instruction in the Source Pane of the Process Win-
dow. TotalView dims thread and process information in the Root Window’s
Attached Page for share group members if the thread or process is not at the se-
lected line. TotalView considers a process to be at the selected line if any of the
threads in the process are at that line. Selecting a line in the Process Window that is
already selected removes the dimming in the Attached Page.

CLI EQUIVALENT: dfocus ... dout

CLI EQUIVALENT: dstatus
232 TotalView Users Guide Version 6.2

Debugging Programs

Continuing with a Specific Signal
The Attached Page reflects the line that you last selected. If you have several Pro-
cess Windows open, the information in the Attached Page will change depending
on the line you selected last in each Process Window. The display can also change
after an operation that changes the process state or when you issue a Window >
Update command.

Figure 130 on page 233 shows an Attached Page with dimmed process informa-
tion. In this example, the parallel program was run to a barrier breakpoint, and one
process (dmpirun<cpi>.1) was stepped to the next source line.

Since the MPI starter process (dmpirun) isn’t in the same share group as the pro-
cesses running the cpi program, TotalView doesn’t dim its process information.

Continuing with a Specific Signal

Letting your program continue after sending it a signal is useful when your program
contains a signal handler. Here’s how you tell TotalView to do this:

1 Select the Process Window’s Thread > Continuation Signal command. (See
Figure 131.)

FIGURE 130: Dimmed Process Information in the Root Window
Version 6.2 TotalView Users Guide 233

10
Debugging Programs

Deleting Programs
2 Select the signal to be sent to the thread and then select OK.

The continuation signal is set for the thread contained in the current Process
Window. If the operating system can deliver multi-threaded signals, you can set a
separate continuation signal for each thread. If it can’t, this command clears
continuation signals set for other threads in the process.

3 Continue execution of your program with commands such as Process > Go,
Step, Next, or Detach.

TotalView continues the threads and sends it the specified signals.

NOTE You can clear the continuation signal by selecting signal 0.

Deleting Programs

To delete all the processes in a control group, use the Group > Delete command.
The next time you start the program, for example, by using the Process > Go com-
mand, TotalView creates and starts a fresh master process.

FIGURE 131: Thread > Continuation Signal Dialog Box

CLI EQUIVALENT: dfocus g dkill
234 TotalView Users Guide Version 6.2

Debugging Programs

Restarting Programs
Restarting Programs

You can use the Group > Restart command to restart a program that is running or
one that is stopped but hasn’t exited.

If the process is part of a multiprocess program, TotalView deletes all related pro-
cesses, restarts the master process, and runs the newly created program.

The Group > Restart command is equivalent to the Group > Delete command fol-
lowed by the Process > Go command.

Checkpointing Programs and Processes

On SGI IRIX platforms, you can save the state of selected processes and then use
this saved information to restart the processes from the position where they were
saved. For more information, see the Process Window’s Tools > Create Checkpoint
and Tools > Restart Checkpoint commands in TotalView’s Help information. (See
Figure 132.)

CLI EQUIVALENT: drerun

CLI EQUIVALENT: dcheckpoint
drestart
Version 6.2 TotalView Users Guide 235

10
Debugging Programs

Setting the Program Counter
Setting the Program Counter

TotalView lets you resume execution at a different statement than the one at which
it stopped execution by resetting the value of the program counter (PC). For exam-
ple, you might want to skip over some code, execute some code again after chang-
ing certain variables, or restart a thread that is in an error state.

Setting the PC can be crucial when you want to restart a thread that is in an error
state. Although the PC icon in the line number area points to the source statement
that caused the error, the PC actually points to the failed machine instruction in the
source statement. You need to explicitly reset the PC to the correct instruction.
(You can verify the actual location of the PC before and after resetting it by display-

FIGURE 132: Checkpoint and Restart Dialog Boxes
236 TotalView Users Guide Version 6.2

Debugging Programs

Interpreting Status and Control Registers
ing it in the Stack Frame Pane or displaying both source and assembler code in the
Source Pane.)

In TotalView, you can set the PC of a stopped thread to a selected source line, a se-
lected instruction, or an absolute value (in hexadecimal). When you set the PC to a
selected line, the PC points to the memory location where the statement begins.
For most situations, setting the PC to a selected line of source code is all you need
to do.

To set the PC to a selected line:

1 If you need to set the PC to a location somewhere in a line of source code,
display the View > Source As > Both command. TotalView responds by dis-
playing the assembler code.

2 Select the source line or instruction in the Source Pane. TotalView highlights
the line.

3 Select the Thread > Set PC command. TotalView asks for confirmation, resets
the PC, and moves the PC icon to the selected line.

When you select a line and ask TotalView to set the PC to that line, TotalView
attempts to force the thread to continue execution at that statement in the cur-
rently selected stack frame. If the currently selected stack frame is not the top stack
frame, TotalView asks if it can unwind the stack:

This frame is buried. Should we attempt to unwind the
stack?

If you select Yes, TotalView discards deeper stack frames (that is, all stack frames
that are more deeply nested than the selected stack frame) and resets the machine
registers to their values for the selected frame. If you select No, TotalView sets the
PC to the selected line, but it leaves the stack and registers in their current state.
Since you can’t assume that the stack and registers have the right values, selecting
No is almost always the wrong thing to do.

Interpreting Status and Control Registers

The Stack Frame Pane in the Process Window lists the contents of CPU registers for
the selected frame—you might need to scroll past the stack local variables to see
Version 6.2 TotalView Users Guide 237

10
Debugging Programs

Interpreting Status and Control Registers
them. To learn about the meaning of these registers, you need to consult the user’s
guide for your CPU and “Architectures” in the TOTALVIEW REFERENCE GUIDE.

For your convenience, TotalView displays the bit settings of many CPU registers
symbolically. For example, TotalView symbolically displays registers that control
rounding and exception enable modes. You can edit the values of these registers
and continue execution of your program. For example, you might do this to exam-
ine the behavior of your program with a different rounding mode.

Since the registers that are displayed vary from platform to platform, see “Architec-
tures” in the TOTALVIEW REFERENCE GUIDE for information on how TotalView displays
this information on your CPU. For general information on editing the value of vari-
ables (including registers), refer to “Displaying Areas of Memory” on page 289.

CLI EQUIVALENT: dprint register
You must quote the initial $ character in the register name; for
example, dprint \$r1.
238 TotalView Users Guide Version 6.2

Version 6.2
Chapter 11
Using Groups, Processes, and Threads
While the specifics of how multiprocess, multithreaded programs execute differ greatly
from platform to platform and environment to environment, all share some general
characteristics. This chapter discusses TotalView’s process/thread model. It also describes
the way in which you tell the GUI and the CLI what processes and threads it should direct
a command to.

The topics discussed in this chapter are:

g “Defining the GOI, POI, and TOI” on page 239
g “Setting a Breakpoint” on page 241
g “Stepping (Part I)” on page 241
g “Using P/T Set Controls” on page 245
g “Setting Process and Thread Focus” on page 247
g “Setting Group Focus” on page 253
g “Stepping (Part II): Some Examples” on page 268
g “Using P/T Set Operators” on page 270
g “Using the P/T Set Browser” on page 271
g “Using the Group Editor” on page 275

Defining the GOI, POI, and TOI

This chapter consistently uses three related acronyms:

g GOI, which means Group of Interest

g POI, which means Process of Interest

g TOI, which means Thread of Interest
TotalView Users Guide 239

11
Using Groups, Processes, and Threads

Defining the GOI, POI, and TOI
These terms are important in TotalView’s process/thread model because TotalView
must determine the scope of what it will do when executing a command. For
example, Chapter 2 introduced the kinds of groups contained within TotalView. For
reasons that will become obvious in this chapter, that chapter ignored what hap-
pens when you execute a TotalView command upon a group. For example, what
does “stepping a group” actually mean? Which processes and threads will TotalView
are actually stepped? What happens to processes and threads that aren’t in this
group?

Associated with these three terms is a fourth: arena. The arena is the collection of
processes, threads, and groups that are affected by a debugging command. This
collection is called an arena list.

In the GUI, the arena is most often set using the two pulldown menus in the tool-
bar. If you examine the menubar, you’ll see that there are 8 next commands. The dif-
ference between them is the arena; that is, the difference between the next
commands is the processes and threads that are the target of what the next com-
mand runs.

When TotalView executes any action command, the arena decides the scope of
what can run. It doesn’t, however, determine what will run. Depending on the com-
mand, TotalView determines the TOI, POI, or GOI, and then executes the com-
mand’s action upon that thread, process, or group. For example, assume that you
tell TotalView to step the current control group.

g TotalView needs to know what the TOI is so it can determine what threads are in
the lockstep group—TotalView only allows you to step a lockstep group.

g The lockstep group is part of a share group.

g This share group is also contained in a control group.

So, by knowing what the TOI is, the TotalView GUI also knows what the GOI is. This
is important because, as you will see, while TotalView now knows what it will step
(the threads in the lockstep group), it also knows what it will allow to run freely
while it is stepping these threads. In the CLI, the P/T set determines the TOI.

Using the GOI, POI, and TOI will become clearer as you read the rest of this chapter.
240 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Setting a Breakpoint
Setting a Breakpoint

You can set breakpoints in your program by selecting the boxed line numbers in the
Source Code pane of a Process window. A boxed line number indicates that the line
generates executable code. A icon masking a line number indicates that a
breakpoint is set on the line. Selecting the icon clears the breakpoint.

When a program reaches a breakpoint, it stops. You can let the program resume ex-
ecution in any of the following ways:

g Use single-step commands described in “Using Stepping Commands” on page 229.

g Use the set program counter command to resume program execution at a spe-
cific source line, machine instruction, or absolute hexadecimal value. See “Setting
the Program Counter” on page 236.

g Set breakpoints at lines you choose and allow your program to execute to that
breakpoint. “Setting Breakpoints and Barriers” on page 339.

g Set conditional breakpoints that cause a program to stop after it evaluates a
condition that you define, for example “stop when a value is less than 8. See
“Setting Evaluation Points” on page 356.

TotalView provides additional features for working with breakpoints, process barrier
breakpoints, and evaluation points. For more information, refer to Chapter 14, “Set-
ting Action Points” on page 337.

Stepping (Part I)

TotalView’s stepping commands allow you to:

g Execute one source line or machine instruction at a time; for example, Process >
Step in the GUI and dstep in the CLI.

g Run to a selected line, which acts like a temporary breakpoint; for example,
Process > Run To.

CLI Equivalent: dstep

CLI Equivalent: duntil
Version 6.2 TotalView Users Guide 241

11
Using Groups, Processes, and Threads

Stepping (Part I)
g Run until a function call returns. For example, Process > Out.

In all cases, stepping commands operate on the Thread of Interest (TOI). In the
GUI, the TOI is the selected thread in the current Process Window. In the CLI, the
TOI is the thread that TotalView uses to determine the scope of the stepping
operation.

On all platforms except SPARC Solaris, TotalView uses smart single-stepping to
speed up stepping of one-line statements containing loops and conditions, such as
Fortran 90 array assignment statements. Smart stepping occurs when TotalView re-
alizes that it doesn’t need to step through an instruction. For example, assume that
you have the following statements:

integer iarray (1000,1000,1000)
iarray = 0

These two statements define one billion scalar assignments. If your machine steps
every instruction, you will probably never get past this statement. Smart stepping
means that TotalView will single-step through the assignment statement at a speed
that is very close to your machine’s native speed.

Other topics in this section are:

g “Group Width” on page 242

g “Process Width” on page 243

g “Thread Width” on page 243

Group Width

TotalView’s behavior when stepping at group width depends on whether the Group
of Interest (GOI) is a process group or a thread group. In the following lists, goal
means the place at which things should stop executing. For example, if you are do-
ing a step command, it is the next line. If it is a run to command, it is the selected
line.

CLI Equivalent: dout
242 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Stepping (Part I)
If the GOI is a:

g Process group, TotalView examines the group and identifies which of its processes
has a thread stopped at the same location as the TOI (a matching process).
TotalView runs these matching processes until one of its threads arrives at the
goal. When this happens, TotalView stops the thread’s process. The command
finishes when it has stopped all of these “matching” processes.

g Thread group, TotalView runs all processes in the control group. However, as each
thread arrives at the goal, TotalView just stops that thread; the rest of the threads
in the same process continue executing. The command finishes when all threads
in the GOI arrive at the goal. When the command finishes, TotalView will stop all
processes in the control group.
TotalView doesn’t wait for threads that are not in the same share group as the
TOI since they are executing different code and can never arrive at the goal.

Process Width

TotalView’s behavior when stepping at process width (which is the default) depends
on whether the Group of Interest (GOI) is a process group or a thread group. If the
GOI is a:

g Process group, TotalView runs all threads in the process, and execution continues
until the TOI arrives at its goal, which can be the next statement, the next in-
struction, and so on. Only when the TOI reaches the goal will TotalView stop the
other threads in the process.

g Thread group, TotalView allows all threads in the GOI and all manager threads to
run. As each member of the GOI arrives at the goal, TotalView stops it; the rest of
the threads continue executing. The command finishes when all members of the
GOI arrive at the goal. At that point, TotalView stops the whole process.

Thread Width

When TotalView performs a stepping command, it decides what it will step based on
the width. Using the toolbar, you specify width using the left-most pulldown. This
pulldown has three items: Group, Process, and Thread.

Stepping at thread width tells TotalView that it should just run that thread. It does
not step other threads. In contrast, process width tells TotalView that it should run
Version 6.2 TotalView Users Guide 243

11
Using Groups, Processes, and Threads

Stepping (Part I)
all threads in the process that are allowed to run while the TOI is stepped. While
TotalView is stepping the thread, manager threads are running freely.

Stepping a thread isn’t the same as stepping a thread’s process because a process
can have more than one thread.

NOTE Thread-stepping is not implemented on Sun platforms. On SGI platforms, thread-
stepping is not available with pthread programs. If, however, your program’s parallelism is
based on SGI’s sprocs, thread-stepping is available.

Thread-level single-step operations can fail to complete if the TOI needs to syn-
chronize with a thread that isn’t running. For example, if the TOI requires a lock that
another held thread owns, and steps over a call that tries to acquire the lock, the
primary thread can’t continue successfully. You must allow the other thread to run
in order to release the lock. In this case, you should instead use process-width
stepping.

Using “Run To” and duntil Commands

The duntil and “Run To” commands differ from other step commands when you ap-
ply them to a process group. (These commands tells TotalView to execute program
statements until a selected statement is reached.) When applied to a process group,
TotalView identifies all processes in the group already having a thread stopped at
the goal. These are the matching processes. TotalView then runs only the nonmatch-
ing processes. Whenever a thread arrives at the goal, TotalView stops its process.
The command finishes when it has stopped all members of the group. This lets you
sync up all the processes in a group in preparation for group-stepping them.

Here is what you should know if you’re running at process width:

Process group If the Thread of Interest (TOI) is already at the goal location,
TotalView steps the TOI past the line before the process is run.
This allows you to use the Run To command repeatedly within
loops.

Thread group If any thread in the process is already at the goal, TotalView
temporarily holds it while other threads in the process run. Af-
ter all threads in the thread group reach the goal, TotalView
stops the process. This allows you to synchronize the threads
in the POI at a source line.
244 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Using P/T Set Controls
If you’re running at group width:

Process group TotalView examines each process in the process and share
group to determine if at least one thread is already at the goal.
If a thread is at the goal, TotalView holds its process. Other
processes are allowed to run. When at least one thread from
each of these processes is held, the command completes. This
lets you synchronize at least one thread in each of these pro-
cesses at a source line. If you’re running a control group, this
synchronizes all processes in the share group.

Thread group TotalView examines all the threads in the thread group that are
in the same share group as the TOI to determine if a thread is
already at the goal. If it is, TotalView holds it. Other threads are
allowed to run. When all of the threads in the TOI’s share
group reach the goal, TotalView stops the TOI’s control group
and the command completes. This lets you synchronize
thread group members. If you’re running a workers group, this
synchronizes all worker threads in the share group.

The process stops when the TOI and at least one thread from each process in the
group or process reach the command stopping point. This lets you synchronize a
group of processes and bring them to one location.

You can also run to a selected line in a nested stack frame, as follows:

1 Select a nested frame in the Stack Trace Pane.

2 Select a source line or instruction in the function.

3 Issue a Run To command.

TotalView executes the primary thread until it reaches the selected line in the
selected stack frame.

Using P/T Set Controls

A few TotalView windows have P/T set control elements. For example, Figure 133 on
page 246 shows the top portion of the Process Window.

This pulldown menu differs from the P/T set controls on other elements. On other
windows, there are two pulldowns. However, in the context of the Process Window,
elements from the two pulldowns have been combined both to eliminate actions
Version 6.2 TotalView Users Guide 245

11
Using Groups, Processes, and Threads

Using P/T Set Controls
that don’t have meaning. When you select a group and a modifier, you are telling
TotalView that when you press one of the remaining buttons on the toolbar, this el-
ement names the focus upon which TotalView will act. For example, if Thread is se-
lected and you select Step, TotalView steps the current thread. If Process (workers)
is selected and you select Halt, TotalView halts all processes associated with the
current threads workers group. If you were running a multiprocess program, other
processes would continue to execute.

Here’s what the controls look like in other windows may have additional P/T set
controls.

The first pulldown menu, which is called the Width Pulldown, has three elements on
it: Group, Process, and Thread. Your choices here indicate the width of the com-
mand. For example, if Group is selected, a Go command continues the group.
Which group TotalView will continue is set by the choices on the second pulldown
menu. The Width Pulldown tells TotalView where it should look when it tries to deter-
mine what it will manipulate. The second pulldown, which is called the Scope Pull-
down, tells TotalView which processes and threads within the scope defined by the
Width Pulldown it should manipulate. For example, you could tell TotalView to step

Figure 133: The P/T Set Control in the Process Window

Figure 134: The P/T Set Control in the Tools > Evaluate Window
246 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Setting Process and Thread Focus
the threads defined in the current workers group that are contained in the current
process.

Finally, the P/T Selector (the third pulldown menu from the left) lets you change the
focus of the action from the currently defined process and threads to any other
process and thread that TotalView controls. That is, this changes the POI and TOI

The P/T Set expression box on the right allows you to directly enter a P/T set ex-
pression. The focus of what you enter is modified by the other P/T set controls.

What is selected can be quite complicated when you use the GUI to set these con-
trols, or when you specify a focus using the CLI.

Setting Process and Thread Focus

NOTE While the previous sections have emphasized the GUI, this section and the ones that
follow emphasize the CLI. In all cases, the selection of what TotalView runs is based directly or
indirectly on P/T set syntax. While the focus is obvious in the CLI, it is often buried within the
internals of the GUI. Reading the rest of this chapter is important when you want to have full
asynchronous debugging control over your program. Having this level of control, however, is
seldom necessary.

When it executes a command, TotalView must decide which processes and threads
it should act on. Most commands have a default set of threads and processes and,
in most cases, you won’t want to change the default. In the GUI, the default is the
process and thread in the current Process Window. In the CLI, this default is indi-
cated by the focus, which is shown in the CLI’s prompt.

There are times, however, when you’ll need to change this default. This section be-
gins a rather intensive look at how you tell TotalView what processes and threads it
should use as the target of a command.

Topics in this section are:

g “Process/Thread Sets” on page 248

g “Arenas” on page 249

g “Specifying Processes and Threads” on page 250
Version 6.2 TotalView Users Guide 247

11
Using Groups, Processes, and Threads

Setting Process and Thread Focus
Process/Thread Sets

All TotalView commands operate on a set of processes and threads. This set is
called a P/T (Process/Thread) set. The right-hand text box in windows containing P/T
set controls lets you construct these sets. In the CLI, you specify a P/T set as an ar-
gument to a command such as dfocus. If you’re using the GUI, TotalView creates
this list for you based on which Process Window has focus.

Unlike a serial debugger where each command clearly applies to the only executing
thread, TotalView can control and monitor many threads with their PCs at many dif-
ferent locations. The P/T set indicates the groups, processes, and threads that are
the target of the CLI command. No limitation exists on the number of groups, pro-
cesses, and threads in a set.

A P/T set is a Tcl list containing one or more P/T identifiers. (The next section, “Are-
nas” on page 249, explains what a P/T identifier is.) Tcl lets you create lists in two
ways:

g You can enter these identifiers within braces ({ }).

g You can use Tcl commands that create and manipulate lists.

These lists are then used as arguments to a command. If you’re entering one ele-
ment, you usually do not have to use Tcl’s list syntax.

For example, the following list contains specifiers for process 2, thread 1, and pro-
cess 3, thread 2:

{p2.1 p3.2}

If you do not explicitly specify a P/T set in the CLI, TotalView defines a target set for
you. (In the GUI, the default set is determined by the current Process Window.) This
set is displayed as the (default) CLI prompt. (For information on this prompt, see
“Command and Prompt Formats” on page 203.)

You can change the focus upon which a command acts by using the dfocus com-
mand. If the CLI executes dfocus as a unique command, it changes the default P/T
set. For example, if the default focus is process 1, the following command changes
the default focus to process 2:

dfocus p2
248 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Setting Process and Thread Focus
After TotalView executes this command, all commands that follow will focus on pro-
cess 2.

NOTE In the GUI, you’d set the focus by displaying a Process Window containing this
process.

If you begin a command with dfocus, TotalView changes the target for just the com-
mand that follows. After the command executes, TotalView restores the old default.
The following example shows both of these ways to use the dfocus command.
Assume that the current focus is process 1, thread 1. The following commands
change the default focus to group 2 and then step the threads in this group twice:

dfocus g2
dstep
dstep

In contrast, if the current focus is process 1, thread 1, the following commands step
group 2 and then step process 1, thread 1:

dfocus g2 dstep
dstep

Some commands only operate at the process level; that is, you cannot apply them
to a single thread (or group of threads) in the process but must apply them to all or
to none.

Arenas

A P/T identifier often indicates a number of groups, processes, and threads. For ex-
ample, assume that two threads executing in process 2 are stopped at the same
statement. This means that TotalView places the two stopped threads into lockstep
groups. If the default focus is process 2, stepping this process actually steps both
of these threads.

TotalView uses the term arena to define the processes and threads that are the tar-
get of an action. In this case, the arena has two threads. Many CLI commands can
act on one or more arenas. For example, here is a command with two arenas:

dfocus {p1 p2}

The two arenas are process 1 and process 2.
Version 6.2 TotalView Users Guide 249

11
Using Groups, Processes, and Threads

Setting Process and Thread Focus
So, what is the GOI, POI, and TOI when there is an arena list? In this case, each
arena within the list will have its own GOI, POI, and TOI.

Specifying Processes and Threads

A previous section described a P/T set as being a list, but ignored what the individ-
ual elements of the list are. A better definition is that a P/T set is a list of arenas,
where an arena consists of the processes, threads, and groups that are affected by a
debugging command. Each arena specifier describes a single arena in which a com-
mand will act; the list is just a collection of arenas. Most commands iterate over the
list, acting individually on an arena. Some CLI output commands, however, will
combine arenas and act on them as a single target.

An arena specifier includes a width and a TOI. (“Widths” are discussed later in this
section.) In the P/T set, the TOI specifies a target thread, while the width specifies
how many threads surrounding the thread of interest are affected.

The Thread of Interest (TOI)
The TOI is specified as p.t, where p is the TotalView process ID (PID) and t is the
TotalView thread ID (TID). The p.t combination identifies the POI (Process of Inter-
est) and TOI. The TOI is the primary thread affected by a command. This means
that it is the primary focus for a TotalView command. For example, while the dstep
command always steps the TOI, it can run the rest of the threads in the POI and
step other processes in the group.

In addition to using numerical values, you can also use two special symbols:

g The less-than (<) character indicates the lowest number worker thread in a process
and is used instead of the TID value. If, however, the arena explicitly names a
thread group, < means the lowest numbered member of the thread group. This
symbol lets TotalView select the first user thread, which may not be thread 1; for
example, the first and only user thread may be thread number 3 on HP Alpha
systems.

g A dot (.) indicates the current set. While this is seldom used interactively, it can
be useful in scripts.
250 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Setting Process and Thread Focus
Process and Thread Widths
You can enter a P/T set in two ways. If you’re not manipulating groups, the format is:

[width_letter][pid][.tid]

NOTE The next section extends this format to include groups.

For example, p2.3 indicates process 2, thread 3.

While the syntax seems to indicate that you do not need to enter any element,
TotalView requires that you enter at least one. Because TotalView will try to deter-
mine what it can do based on what you type, it will try to fill in what you omit. The
only requirement is that when you use more than one element, you use them in the
order shown here.

You can leave out parts of the P/T set if what you do enter is unambiguous. A miss-
ing width or PID is filled in from the current focus. A missing TID is always assumed
to be <. For more information, see “Incomplete Arena Specifiers” on page 267.

The width_letter indicates which processes and threads are part of the arena. The let-
ters you can use are:

t Thread width

A command’s target is the indicated thread.

p Process width

A command’s target is the process containing the TOI.

g Group width

A command’s target is the group containing the POI. This indicates
control and share groups.

a All processes

A command’s target is all threads in the GOI that are in the POI.

d Default width

A command’s target depends on the default for each command. This is
also the width to which the default focus is set. For example, the dstep
command defaults to process width (run the process while stepping
one thread), and the dwhere command defaults to thread width. De-
fault widths are listed in “Default Arena Widths” in the TOTALVIEW REFER-
ENCE GUIDE.
Version 6.2 TotalView Users Guide 251

11
Using Groups, Processes, and Threads

Setting Process and Thread Focus
You must use lowercase letters to enter these widths.

Figure 135 on page 252 illustrates how these specifiers relate to one another.

Notice that the “g” specifier indicates control and share groups. This inverted trian-
gle is indicating that the arena focuses on a greater number of entities as you move
from thread level at the bottom to “all” level at the top.

As mentioned previously, the TOI specifies a target thread, while the width specifies
how many threads surrounding the TOI are also affected. For example, the dstep
command always requires a TOI, but entering this command can:

g Step just the TOI during the step operation (single-thread single-step).

g Step the TOI and step all threads in the process containing the TOI (process-
level single-step).

g Step all processes in the group that have threads at the same PC (program
counter) as the TOI (group-level single-step).

This list doesn’t indicate what happens to other threads in your program when
TotalView steps your thread. For more information, see “Stepping (Part II): Some Exam-
ples” on page 268.

To save a P/T set definition for later use, assign the specifiers to a Tcl variable. For
example:

Figure 135: Width Specifiers

All

Control Group

Share Group

Process

Thread

a

g

p

g

t

252 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Setting Group Focus
set myset {g2.3 t3.1}
dfocus $myset dgo

As the dfocus command returns its focus set, you can save this value for later use.
For example:

set save_set [dfocus]

Specifier Examples

Here are some sample specifiers:

g2.3 Select process 2, thread 3 and set the width to “group”.

t1.7 Commands act only on thread 7 or process 1.

d1.< Use the default set for each command, focusing on the first user
thread in process 1. The “<” sets the TID to the first user thread.

Setting Group Focus

TotalView has two kinds of groups: process groups and thread groups. Process
groups only contain processes, and thread groups only contain threads. The
threads in a thread group can be drawn from more than one process.

Topics in this section are:

g “Specifying Groups in P/T Sets” on page 255

g “Arena Specifier Combinations” on page 257

g “‘All’ Does Not Always Mean All” on page 259

g “Setting Groups” on page 261

g “Using the ‘g’ Specifier: An Extended Example” on page 263

g “Focus Merging” on page 266

g “Incomplete Arena Specifiers” on page 267

g “Lists with Inconsistent Widths” on page 267
TotalView has four predefined groups. Two of these only contain processes while
the other two only contain threads. As you will see, TotalView also allows you to
create your own groups, and these groups can have elements that are processes
and threads. The predefined process groups are:
Version 6.2 TotalView Users Guide 253

11
Using Groups, Processes, and Threads

Setting Group Focus
g Control Group
Contains the parent process and all related processes. A control group includes
children that were forked (processes that share the same source code as the par-
ent) and children that were forked but which subsequently called execve().

Assigning a new value to the CGROUP(dpid) variable for a process changes that
process’s control group. In addition, the dgroups –add command lets you add
members to a group in the CLI. In the GUI, you use the Group > Edit command.

g Share Group
Contains all members of a control group that share the same executable image.
TotalView automatically places processes in share groups based on their control
group and their executable image.

NOTE You can’t change a share group’s members. In addition, dynamically loaded li-
braries may vary between share group members.

The predefined thread groups are:

g Workers Group
Contains all worker threads from all processes in the control group. The only
threads not contained in a worker’s group are your operating system’s manager
threads.

g Lockstep Group
Contains every stopped thread in a share group that has the same PC. TotalView
creates one lockstep group for every thread. For example, suppose two threads
are stopped at the same PC. TotalView will create two lockstep groups. While
each lockstep group has the same two members, they differ in that each has a
different TOI. While there are some circumstances where this is important to you,
you can ignore this distinction in most cases. That is, while two lockstep groups
exist if two threads are stopped at the same PC, ignoring the second lockstep
group is almost never harmful.

The group ID’s value for a lockstep group differs from the ID of other groups. In-
stead of having an automatically and transient integer ID, the lockstep group ID
is pid.tid, where pid.tid identifies the thread with which it is associated. For ex-
ample, the lockstep group for thread 2 in process 1 is 1.2.

In general, if you’re debugging a multiprocess program, the control group and share
group differ only when the program has children that it forked with by calling
execve().
254 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Setting Group Focus
Specifying Groups in P/T Sets

This section extends the arena specifier syntax to include groups.

If you do not include a group specifier, the default is the control group. For exam-
ple, the CLI only displays a target group in the focus string if you set it to something
other than the default value.

NOTE Target group specifiers are most often used with the stepping commands, as they
give these commands more control over what’s being stepped.

Here is how you add groups to an arena specifier:

[width_letter][group_indicator][pid][.tid]

This format adds the group_indicator to the what was discussed in “Specifying Processes
and Threads” on page 250.

In the description of this syntax, everything appears to be optional. But, while no
single element is required, you must enter at least one element. TotalView will
determine other values based on the current focus.

TotalView lets you identify a group by using a letter, number, or name.

A Group Letter
You can name one of TotalView’s predefined sets. These sets are identified by let-
ters. For example, the following command sets the focus to the workers group:

dfocus W

The group letter, which is always uppercase, can be:

C Control group

All processes in the control group.

D Default control group

All processes in the control group. The only difference between this
specifier and the C specifier is that D tells the CLI that it should not
display a group letter within the CLI prompt.

S Share group

The set of processes in the control group that have the same execut-
able as the arena’s TOI.
Version 6.2 TotalView Users Guide 255

11
Using Groups, Processes, and Threads

Setting Group Focus
W Workers group

The set of all worker threads in the control group.

L Lockstep group

A set containing all threads in the share group that have the same PC
as the arena’s TOI. If you step these threads as a group, they will pro-
ceed in lockstep.

A Group Number
You can identify a group by the number TotalView assigns to it. For example, here is
how you set the focus to group 3:

dfocus 3/

Notice the trailing slash. This slash lets TotalView know that you’re specifying a
group number instead of a PID. The slash character is optional if you’re using a
group_letter. However, you must use it as a separator when entering a numeric group
ID and a pid.tid pair. For example, the following example identifies process 2 in
group 3:

p3/2

A Group Name
You can name a set that you define. You enter this name with slashes. For example,
here is how you would set the focus to the set of threads contained in process 3
and that are also contained in a group called my_group:

dfocus p/my_group/3
256 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Setting Group Focus
Arena Specifier Combinations

The following table lists what’s selected when you use arena and group specifiers to
step your program.

NOTE Stepping commands behave differently if the group being stepped is a process group
rather than a thread group. For example, “aC” and “aS” perform the same action while “aL” is
different.

If you don’t add a PID or TID to your arena specifier, TotalView does it for you, tak-
ing the PID and TID from the current or default focus.

Here are some additional examples. These add PIDs and TIDs to the specifier com-
binations just discussed:

Table 11: Specifier Combinations

Specifier Specifies
aC All threads.
aS All threads.
aW All threads in all workers groups.
aL All threads.

Every thread is a member of a control group and a member of a share group
and a member of a lockstep group. Consequently, three of these definitions
mean “all threads.”

gC All threads in the Thread of Interest’s (TOI) control group.
gS All threads in the TOI’s share group.
gW All worker threads in the control group containing the TOI.
gL All threads in the same share group within the process containing the TOI that

have the same PC and the TOI.
pC All threads in the control group of the Process of Interest (POI). This is the

same as gC.
pS All threads in the process that participate in the same share group as the TOI.
pW All worker threads in the POI.
pL All threads in the POI whose PC is the same as the TOI.
tC Very little. These four combinations, while syntactically correct, are

meaningless. The t specifier overrides the group specifier. So, for example, tW
and t both name the current thread.

tS
tW
tL
Version 6.2 TotalView Users Guide 257

11
Using Groups, Processes, and Threads

Setting Group Focus
pW3 All worker threads in process 3.

pW3.< All worker threads in process 3. Notice that the focus of this
specifier is the same as the previous example’s.

gW3 All worker threads in the control group containing process 3.
Notice the difference between this and pW3, which restricts
the focus to one of the processes in the control group.

gL3.2 All threads in the same share group as process 3 that are exe-
cuting at the same PC as thread 2 in process 3. The reason this
is a share group and not a control group is that different share
groups can reside only in one control group.

/3 Specifies processes and threads in process 3. As the arena
width, POI, and TOI are inherited from the existing P/T set, the
exact meaning of this specifier depends on the previous
context.

While the “/” is unnecessary because no group is indicated, it
is syntactically correct.

g3.2/3 The 3.2 group ID is the name of the lockstep group for thread
3.2. This group includes all threads in process 3’s share group
that are executing at the same PC as thread 2.

p3/3 Sets the process to process 3. The Group of Interest (GOI) is
set to group 3. If group 3 is a process group, most commands
ignore the group setting. If group 3 is a thread group, most
commands act on all threads in process 3 that are also in
group 3.

Setting the process with an explicit group should be done with
care, as what you get may not be what you expect given that
commands, depending on their scope, must look at the TOI,
POI, and GOI.

NOTE Specifying thread width with an explicit group ID probably doesn’t mean much.

In the following examples, the first argument to the dfocus command defines a
temporary P/T set that the CLI command (the last term) will operate on. The dstatus
command lists information about processes and threads. These examples assume
that the global focus was “d1.<” initially.

dfocus g dstatus
Displays the status of all threads in the control group.
258 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Setting Group Focus
dfocus gW dstatus
Displays the status of all worker threads in the control group.

dfocus p dstatus
Displays the status of all worker threads in the current focus
process. The width here, as in the previous example, is pro-
cess and the (default) group is the control group; the intersec-
tion of this width and the default group creates a focus that is
the same as in the previous example.

dfocus pW dstatus
Displays the status of all worker threads in the current focus
process. The width is process level and the target is the work-
ers group.

The following example shows how the prompt changes as you change the focus. In
particular, notice how the prompt changes when you use the C and the D group
specifiers.

d1.<> f C
dC1.<
dC1.<> f D
d1.<
d1.<>

Two of these lines end with “<”. These lines aren’t prompts. Instead, they are the
value returned by TotalView when it executes the dfocus command.

‘All’ Does Not Always Mean All

When you use stepping commands, TotalView determines the scope of what runs
and what stops by looking at the TOI. This section looks at the differences in be-
Version 6.2 TotalView Users Guide 259

11
Using Groups, Processes, and Threads

Setting Group Focus
havior when you use the a (all) arena specifier. Here is what runs when you use this
arena:

This is the same information as was presented in “Arena Specifier Combinations” on
page 257. Here are some combinations and the meaning of these combinations:

f aC dgo Runs everything. If you’re using the dgo command, everything
after the a is ignored: a/aPizza/17.2, ac, aS, and aL do the
same thing. TotalView runs everything.

f aC duntil While everything runs, TotalView must wait until something
reaches a goal. It really isn’t obvious what this thing is. Since C
is a process group, you might guess that all processes run until
at least one thread in every participating process arrives at a
goal. The reality is that since this goal must reside in the cur-
rent share group, this command completes as soon as all pro-
cesses in the TOI’s share group have at least one thread at the
goal. Processes in other control groups run freely until this
happens.

Notice that the TOI determines the goal. If there are other
control groups, they do not participate in the goal.

f aS duntil This command does the same thing as the f aC until com-
mand because, as was just mentioned, the goals for f aC until
and f aS until are the same, and the processes that are in this
scope are identical.

While more than one share group can exist in a control group,
these other share groups do not participate in the goal.

f aL duntil While everything will run, it is again not clear what should oc-
cur. L is a thread group, so you might expect that the duntil

Table 12: a (all) Specifier Combinations

Specifier Specifies
aC All threads.
aS All threads.
aW All threads in all workers groups.
aL All threads.

Every thread is a member of a control group and a member of a share group
and a member of a lockstep group. Consequently, three of these definitions
mean “all threads.”
260 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Setting Group Focus
command will wait until all threads in all lockstep groups arrive
at the goal. Instead, TotalView defines the set of threads that it
will run to a goal as just those thread in the TOI’s lockstep
group. While there are other lockstep groups, these lockstep
groups do not participate in the goal. So, while the TOI’s lock-
step threads are progressing towards their goal, all threads
that were previously stopped run freely.

f aW duntil While everything will run, TotalView will wait until all members
of the TOI’s workers group arrive at the goal.

There are two broad distinctions between process and thread group behavior:

g When the focus is on a process group, TotalView waits until just one thread from
each participating process arrives at the goal. The other threads just run, and
TotalView doesn’t care where they end up.
When focus is on a thread group, every participating thread must arrive at the
goal.

g When the focus is on a process group, TotalView steps a thread over the goal
breakpoint and continues the process if it isn’t the “right thread.”
When the focus is on a thread group, TotalView holds a thread even if it isn’t the
right thread. It also continues the rest of the process. Of course, if your system
doesn’t support asynchronous thread control, TotalView treats thread specifiers
as if they were process specifiers.

With this in mind, f aL dstep does not step all threads. Instead, it steps only the
threads in the TOI’s lockstep group. All other threads run freely until the stepping
process for these lockstep threads completes.

Setting Groups

This section presents a series of examples that set and create groups. Many of the
examples use CLI commands that have not yet been introduced. You will probably
need to refer to the command’s definition before you can appreciate what’s occur-
ring. These commands are described in the TOTALVIEW REFERENCE GUIDE.

NOTE If you will only be using the GUI, there’s nothing you need to know in this section.

Here are some methods for indicating that thread 3 in process 2 is a worker thread.
Version 6.2 TotalView Users Guide 261

11
Using Groups, Processes, and Threads

Setting Group Focus
dset WGROUP(2.3) $WGROUP(2)
Assigns the group ID of the thread group of worker threads as-
sociated with process 2 to the WGROUP variable. (Assigning a
nonzero value to WGROUP indicates that this is a worker
group.)

dset WGROUP(2.3) 1
This is a simpler way of doing the same thing as the previous
example.

dfocus 2.3 dworker 1
Adds the groups in the indicated focus to a workers group.

dset CGROUP(2) $CGROUP(1)
dgroups –add –g $CGROUP(1) 2
dfocus 1 dgroups –add 2

These three commands insert process 2 into the same control
group as process 1.

dgroups –add –g $WGROUP(2) 2.3
Adds process 2, thread 3 to the workers group associated with
process 2.

dfocus tW2.3 dgroups –add
This is a simpler way of doing the same thing as the previous
example.

Here are some additional examples:

dfocus g1 dgroups –add –new thread
Creates a new thread group that contains all the threads in all
the processes in the control group associated with process 1.

set mygroup [dgroups –add –new thread $GROUP($SGROUP(2))]
dgroups –remove –g $mygroup 2.3
dfocus g$mygroup/2 dgo

These three commands define a new group containing all the
threads in process 2’s share group except for thread 2.3 and
then continues that set of threads. The first command creates
a new group containing all the threads from the share group,
the second removes thread 2.3, and the third runs the remain-
ing threads.
262 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Setting Group Focus
Using the ‘g’ Specifier: An Extended Example

The meaning of the g width specifier is sometimes not clear when it is coupled with
a group scope specifier. Why have a g specifier when you have four other group
specifiers? Stated in another way, isn’t something like gL redundant?

The simplest answer, and the reason you’ll most often use g, is that it forces the
group when the default focus indicates something different from what you want it
to be.

Here’s an example that shows this. The first step is to set a breakpoint in a multi-
threaded OMP program and execute the program until it hits the breakpoint:

d1.<> dbreak 35
Loaded OpenMP support library libguidedb_3_8.so :

KAP/Pro Toolset 3.8
1
d1.<> dcont
Thread 1.1 has appeared
Created process 1/37258, named "tx_omp_guide_llnl1"
Thread 1.1 has exited
Thread 1.1 has appeared
Thread 1.2 has appeared
Thread 1.3 has appeared
Thread 1.1 hit breakpoint 1 at line 35 in
".breakpoint_here"

The default focus is d1.<, which means that the CLI is at its default width, The POI
is 1, and the TOI is the lowest numbered nonmanager thread. Because the default
width for the dstatus command is “process,” the CLI displays the status of all pro-
cesses. Typing dfocus p dstatus produces the same output.

d1.<> dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.2: 37258.2 Stopped PC=0xffffffffffffffff
1.3: 37258.3 Stopped PC=0xd042c944
Version 6.2 TotalView Users Guide 263

11
Using Groups, Processes, and Threads

Setting Group Focus
d1.<> dfocus p dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.2: 37258.2 Stopped PC=0xffffffffffffffff
1.3: 37258.3 Stopped PC=0xd042c944

Here’s what the CLI displays when you ask for the status of the lockstep group.
(The rest of this example will use the f abbreviation for dfocus and st for dstatus.)

d1.<> f L st
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

This command tells the CLI to display the status of the threads in thread 1.1's lock-
step group as this thread is the TOI. The f L focus command narrows the set so that
the display only includes the threads in the process that are at the same PC as the
TOI.

NOTE By default, the dstatus command displays information at “process” width. This means
that you don’t need to type “f pL dstatus”.

The next command runs thread 1.3 to the same line as thread 1.1. The next com-
mand then displays the status of all the threads in the process:

d1.<> f t1.3 duntil 35
35@> write(*,*)"i= ",i,

"thread= ",omp_get_thread_num()
d1.<> f p dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.2: 37258.2 Stopped PC=0xffffffffffffffff
1.3: 37258.3 Breakpoint PC=0x1000acd0,

[./tx_omp_llnl1.f#35]

As expected, the CLI has added a thread to the lockstep group:

d1.<> f L dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]
264 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Setting Group Focus
The next set of commands begins by narrowing the width of the default focus to
thread width—notice that the prompt changes—and then displays the contents of
the lockstep group.

d1.<> f t
t1.<> f L dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

While the lockstep group of the TOI has two threads, the current focus has only one
thread, and that thread is, of course, part of the lockstep group. Consequently, the
lockstep group in the current focus is just the one thread even though this thread’s
lockstep group has two threads.

If you ask for a wider width (p or g) with L, the CLI displays more threads from the
lockstep group of thread 1.1.

t1.<> f pL dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

t1.<> f gL dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

t1.<>

NOTE If the TOI is 1.1, “L” refers to group number 1.1, which is the lockstep group of thread
1.1.

Because this example only contains one process, the pL and gL specifiers produce
the same result when used with dstatus. If, however, there were additional pro-
cesses in the group, you would only see them when you use the gL specifier.
Version 6.2 TotalView Users Guide 265

11
Using Groups, Processes, and Threads

Setting Group Focus
Focus Merging

When you specify more than one focus for a command, the CLI will merge them to-
gether. In the following example, the focus indicated by the prompt—this focus is
called the outer focus—controls the display. Notice what happens when dfocus
commands are strung together:

t1.<> f d
d1.<
d1.<> f tL dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

d1.<> f tL f p dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

d1.<> f tL f p f D dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.2: 37258.2 Stopped PC=0xffffffffffffffff
1.3: 37258.3 Breakpoint PC=0x1000acd0,

[./tx_omp_llnl1.f#35]
d1.<> f tL f p f D f L dstatus
1: 37258 Breakpoint [tx_omp_guide_llnl1]

1.1: 37258.1 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

1.3: 37258.3 Breakpoint PC=0x1000acd0,
[./tx_omp_llnl1.f#35]

d1.<>

Stringing multiple focuses together may not produce the most readable result. In
this case, it shows how one dfocus command can modify what another sees and
will act on. The ultimate result is an arena that a command will act on. In these
examples, the dfocus command is telling the dstatus command what it should be
displaying.
266 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Setting Group Focus
Incomplete Arena Specifiers

In general, you do not need to completely specify an arena. TotalView provides val-
ues for any missing elements. TotalView either uses built-in default values or ob-
tains them from the current focus. Here is how TotalView fills in missing pieces:

g If you don’t use a width, TotalView uses the width from the current focus.

g If you don’t use a PID, TotalView uses the PID from the current focus.

g If you set the focus to a list, there is no longer a default arena. This means that
you must explicitly name a width and a PID. You can, however, omit the TID. (If
you omit the TID, TotalView defaults to <.)
You can type a PID without typing a TID. If you omit the TID, TotalView uses its
default of “<”, where “<” indicates the lowest numbered worker thread in the
process. If, however, the arena explicitly names a thread group, < means the
lowest numbered member of the thread group.

TotalView doesn’t use the TID from the current focus, since the TID is a process-
relative value.

g A dot before or after the number lets TotalView know if you’re specifying a pro-
cess or a thread. For example, “1.” is clearly a PID, while “.7” is clearly a TID.
If you type a number without typing a dot, the CLI most often interprets the
number as being a PID.

g If the width is t, you can omit the dot. For instance, t7 refers to thread 7.

g If you enter a width and don’t specify a PID or TID, TotalView uses the PID and
TID from the current focus.
If you use a letter as a group specifier, TotalView obtains the rest of the arena
specifier from the default focus.

g You can use a group ID or tag followed by a “/”. TotalView obtains the rest of the
arena from the default focus.

Of course, focus merging can also influence how TotalView fills in missing specifiers.
For more information, see “Focus Merging” on page 266.

Lists with Inconsistent Widths

TotalView lets you create lists containing more than one width specifier. While this
can be very useful, it can be confusing. Consider the following:

{p2 t7 g3.4}
Version 6.2 TotalView Users Guide 267

11
Using Groups, Processes, and Threads

Stepping (Part II): Some Examples
This list is quite explicit: all of process 2, thread 7, and all processes in the same
group as process 3, thread 4. However, how should TotalView use this set of pro-
cesses, groups, and threads?

In most cases, TotalView does what you would expect it to do: a command iterates
over the list and acts on each arena. If TotalView cannot interpret an inconsistent
focus, it prints an error message.

Some commands work differently. Some use each arena’s width to determine the
number of threads on which it will act. This is exactly what the dgo command does.
In contrast, the dwhere command creates a call graph for process-level arenas,
and the dstep command runs all threads in the arena while stepping the TOI. It may
wait for threads in multiple processes for group-level arenas. The command de-
scription in the TOTALVIEW REFERENCE GUIDE will point out anything that you need
to watch out for.

Stepping (Part II): Some Examples

Here are some examples of things that you’ll probably do using the CLI’s stepping
commands:

g Step a single thread
While the thread runs, no other thread runs (except kernel manager threads).

Example: dfocus t dstep

g Step a single thread while the process runs
A single thread runs into or through a critical region.

Example: dfocus p dstep

g Step one thread in each process in the group
While one thread in each process in the share group runs to a goal, the rest of
the threads run freely.

Example: dfocus g dstep

g Step all worker threads in the process while nonworker threads run
Runs worker threads through a parallel region in lockstep.

Example: dfocus pW dstep
268 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Stepping (Part II): Some Examples
g Step all workers in the share group
All processes in the share group participate. The nonworker threads run.

Example: dfocus gW dstep

g Step all threads that are at the same PC as the TOI
TotalView selects threads from one process or from the entire share group. This
differs from the previous two bullets in that TotalView uses the set of threads
that are in lockstep with the TOI rather than using the workers group.

Example: dfocus L dstep

In the following examples, the default focus is set to d1.<.

dstep Steps the TOI while running all other threads in the process.

dfocus W dnext Runs the TOI and all other worker threads in the process to the
next statement. Other threads in the process run freely.

dfocus W duntil 37
Runs all worker threads in the process to line 37.

dfocus L dnext Runs the TOI and all other stopped threads at the same PC to
the next statement. Other threads in the process run freely.
Threads that encounter a temporary breakpoint in the course
of running to the next statement usually join the lockstep
group.

dfocus gW duntil 37
Runs all worker threads in the share group to line 37. Other
threads in the control group run freely.

UNW 37 Performs the same action as the previous command: runs all
worker threads in the share group to line 37. This example
uses the predefined UNW alias instead of the individual com-
mands. That is, UNW is an alias for dfocus gW duntil.

SL Finds all threads in the share group that are at the same PC as
the TOI and steps them all one statement. This command is
the built-in alias for dfocus gL dstep.

sl Finds all threads in the current process that are at the same
PC as the TOI, and steps them all one statement. This com-
mand is the built-in alias for dfocus L dstep.
Version 6.2 TotalView Users Guide 269

11
Using Groups, Processes, and Threads

Using P/T Set Operators
Using P/T Set Operators

At times, you do not want all of one kind of group or process to be in the focus set.
TotalView lets you use the following three operators to manage your P/T sets:

| Creates a union; that is, all members of the sets.

- Creates a difference; that is, all members of the first set that are not
also members of a second set.

& Creates an intersection; that is, all members of the first set that are
also members of the second set.

For example, here is how you would create a union of two P/T sets:

p3 | L2

A set operator only operates on two sets. You can, however, apply these operations
repeatedly. For example:

p2 | p3 & L2

This statement creates a union between p2 and p3, and then creates an intersec-
tion between the union and L2. As this example suggests, TotalView associates sets
from left to right. You can change this order by using parentheses. For example:

p2 | (p3 & pL2)

Typically, these three operators are used with the following P/T set functions:

breakpoint() Returns a list of all threads that are stopped at a breakpoint.

error() Returns a list of all threads stopped due to an error.

existent() Returns a list of all threads.

held() Returns a list of all threads that are held.

nonexistent() Returns a list of all processes that have exited or which, while
loaded, have not yet been created.

running() Returns a list of all running threads.

stopped() Returns a list of all stopped threads.

unheld() Returns a list of all threads that are not held.

watchpoint() Returns a list of all threads that are stopped at a watchpoint.

The argument that all of these operators use is a P/T set. You specify this set in the
same way that a P/T set is specified for the dfocus command. For example,
watchpoint(L) returns all threads in the current lockstep group.
270 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Using the P/T Set Browser
The dot (.) operator, which indicates the current set, can be helpful when you are
editing an existing set.

The following examples should clarify how you use these operators and functions.
The P/T set that is the argument to these operators is a (all).

f {breakpoint(a) | watchpoint(a)} dstatus
Shows information about all threads that stopped at break-
points and watchpoints. The a argument is the standard P/T
set indicator for “all”.

f {stopped(a) - breakpoint(a)} dstatus
Shows information about all stopped threads that are not
stopped at breakpoints.

f {. | breakpoint(a)} dstatus
Shows information about all threads in the current set as well
as all threads stopped at a breakpoint.

f {g.3 - p6} duntil 577
Runs thread 3 along with all other processes in the group to
line 577. However, do not run anything in process 6.

f {($PTSET) & p123}
Uses just process 123 within the current P/T set.

Using the P/T Set Browser

There’s no question that specifying P/T sets can be confusing. As has been men-
tioned, there are few programs that need all the power that TotalView’s P/T set syn-
tax provides. In all cases, however, the ability to previsualize what the contents of a
P/T set will be before you execute the command is essential. This is what the P/T
Set Browser is designed to do. The browser, which is accessed from the Root Win-
dow’s Tool menu, shows the current state of processes and threads as well as show
what is or will be selected when you specify a P/T set. Figure 136 on page 272
shows a P/T browser displaying information about a a multiprocess, multithreaded
program.

The top part of this window contains the standard P/T set controls. (See “Using P/T
Set Controls” on page 245 for more information.) The large area on the left is a “tree”
Version 6.2 TotalView Users Guide 271

11
Using Groups, Processes, and Threads

Using the P/T Set Browser
control where clicking on the “+” shows more information, and clicking on a “–”
(not shown in this figure) condenses the information. Here you will find a list of all
your program’s processes and threads. The information is organized in a hierarchy,
with the outermost level being your program’s control groups. In a control group,
information is further organized by share group, where you are shown the pro-
cesses contained in a share group. Finally, if the innermost “+” symbols were
clicked, the browser would show information on the threads within a process.

The control and share group numbers displayed in this window are the same as
those that are displayed in the Groups Page in the Root Window.

The right-hand side contains a graphical depiction of your program’s threads. In the
preceding figure, notice that TotalView has highlighted some of the threads. These
are the threads in the current focus, which in this case is “1.<”. As you make
changes to the P/T set, the threads highlighted in the right-hand side change, show-
ing you what the scope of a P/T set definition is. The next figures contains a variety
of P/T set examples.

➊ This P/T set displayed differs from the one in Figure 136 in that the
Focus pulldown menu is now set to All. TotalView responds by high-
lighting all threads on the right-hand side.

➋ The Focus pulldown menu was changed back to Process but the num-
ber of processes was limited to 1, 2, and 3. Before these changes were

Figure 136: A P/T Set Browser Window
272 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Using the P/T Set Browser
made, process 3 was told to go. As you can see, the browser shows
those processes as running.

➌ Thread 3.1 was halted.

➍ Thread 2.4 was selected with the mouse. It doesn’t matter if it was se-
lected in the left or right-hand sides, as selecting it causes it to be
highlighted in both. After selecting a thread, you can extend the selec-
tion by clicking your mouse’s left button on another thread while hold-
ing down the Shift key. You can select noncontiguous threads by
holding down the Control key while clicking your mouse’s left button.

If you are seeing this document online, you’ll notice that your selection
is in gray while the selection indicating the P/T set is in blue.

Figure 137: P/T Set Browser Windows (Part 1)

➊

➋

Version 6.2 TotalView Users Guide 273

11
Using Groups, Processes, and Threads

Using the P/T Set Browser
➎ The P/T set information was modified to show a difference ex-
pression; in this case, thread 1.3 was eliminated from the set
of threads named by “p1.<“.

Figure 138: P/T Set Browser Windows (Part 2)

➌

➍

➎

274 TotalView Users Guide Version 6.2

Using Groups, Processes, and Threads

Using the Group Editor
The elements on the right side are drawn within two boxes. These boxes represent
the control and share groups. Clicking on them tells the browser to select that
group.

Using the Group Editor

The visual group editor, which is displayed after you select the Group > Edit Group
command, can simplify the way in which you create named groups.

This dialog box can be divided into two halves. The top half allows you to add, up-
date, and delete named sets. The bottom half contains controls that allow you to
specify which processes and threads will become part of the group. These controls
are discussed in the previous section.

The controls in the upper portion work generally as you’d expect them to. The only
thing to be careful about is that you must define the group, and be sure to give the
group a name, before you click on the Add button. Details on using the controls in
this dialog box are contained in the online Help.

Figure 139: Group > Edit Group
Version 6.2 TotalView Users Guide 275

11
Using Groups, Processes, and Threads

Using the Group Editor
276 TotalView Users Guide Version 6.2

Version 6.2
Chapter 12
Examining and Changing Data
This chapter explains how to examine and change data as you debug your program. The
topics discussed in this chapter are:

g “Changing How Data Is Displayed” on page 277
g “Displaying Variables” on page 281
g “Diving in Variable Windows” on page 291
g “Scoping and Symbol Names” on page 294
g “Changing the Values of Variables” on page 296
g “Changing the Data Type of Variables” on page 297
g “Working with Opaque Data” on page 306
g “Changing Types to Display Machine Instructions” on page 307
g “Changing Types to Display Machine Instructions” on page 307
g “Displaying C++ Types” on page 307
g “Displaying Fortran Types” on page 310

g “Displaying Thread Objects” on page 317

Changing How Data Is Displayed

One of the problems you’ll face is that TotalView, like all debuggers, displays data in
the way that your compiler stored it. The following two sections let you change the
the way TotalView displays this information. These sections are:

g “Displaying STL Variables” on page 278

g “Changing Size and Precision” on page 280
TotalView Users Guide 277

12
Examining and Changing Data

Changing How Data Is Displayed
Displaying STL Variables

The C++ STL (Standard Template Library) greatly simplifies the way in which you
can access data. By offering standard and prepackaged ways to organize data, you
do not have to be concerned with the mechanics of the access method. The only
real downside to using the STL is while debugging. This is because the information
you are shown is the compiler’s view of your data rather than the STL’s logical view.
For example, here is how your compiler sees a map compiled using GNU C++:

TotalView comes with a set of transforms that changes how it displays some STL
data. For example, Figure 141 shows the transformed map.

FIGURE 140: An Untransformed Map

FIGURE 141: A Transformed Map
278 TotalView Users Guide Version 6.2

Examining and Changing Data

Changing How Data Is Displayed
TotalView can transform STL vectors, lists, and maps using native and GCC compil-
ers on IBM AIX, IRIX/MIPS, and HP Tru64 Alpha. It also supports GCC and Intel’s
Version 7 C++ 32-bit compiler running on Red Hat x86 platform.

Figure 142 on page 279 shows an untransformed and transformed list and vector.

NOTE You can create your own transformations. The process for doing this is described in
the “Creating Type Transformations Guide”.

FIGURE 142: List and Vector Transformations
Version 6.2 TotalView Users Guide 279

12
Examining and Changing Data

Changing How Data Is Displayed
By default, TotalView transforms these data structures. If you do not want them
transformed, uncheck the View simplified STL containers (and user-defined
transformations) checkbox within the File > Preference’s Options Page.

Changing Size and Precision

In most cases, TotalView does a reasonable job of displaying a variable’s value. If
TotalView’s defaults don’t meet your needs, you can indicate the precision at which
to display simple data types by using the Formatting Page of the File > Preferences
Dialog Box. (See Figure 143 on page 280.)

After selecting one of the data types listed on the left, you can set how many char-
acter positions a value will use when TotalView displays it (Min Width) and how may
numbers it should display to the right of the decimal place (the Precision). You can
also tell TotalView how it should align the value in the Min Width area and if it
should pad numbers with zeros or spaces.

dset TV::ttf { true | false }

FIGURE 143: File > Preferences: Formatting Page
280 TotalView Users Guide Version 6.2

Examining and Changing Data

Displaying Variables
While the way in which these controls relate and interrelate may appear to be com-
plex, the Preview area shows you exactly the result of a change. After you play with
the controls for a minute or so, what each control does will be clear. You will proba-
bly need to set the Min Width value to a larger number than you need it to be to
see the results of a change. For example, if the Min Width doesn’t allow a number
to be justified, it could appear that nothing is happening.

Displaying Variables

TotalView displays variables that are local to the current stack frame in the Process
Window’s Stack Frame Pane. For non-simple variables—for example, pointers, ar-
rays, and structs—this pane doesn’t show the data; instead, you need to dive on
the variable to bring up a Variable Window that contains the variable’s information.
For example, diving on an array variable tells TotalView to display the entire con-
tents of the array.

NOTE Dive on a variable by clicking your middle mouse button on it.

If you dive on simple variables or registers, TotalView still brings up a Variable Win-
dow. In this case, you’ll see some additional information about the variable.

Topics in this section are:

g “Displaying Program Variables” on page 282

g “Browsing for Variables” on page 283

g “Displaying Local Variables and Registers” on page 284

g “Displaying Long Variable Names” on page 286

g “Automatic Dereferencing” on page 287

g “Displaying Areas of Memory” on page 289

g “Displaying Machine Instructions” on page 290

g “Closing Variable Windows” on page 290

CLI EQUIVALENT: You can set these properties from within the CLI. To obtain a
list of variables that you can set, type:

dset TV::data_format*
Version 6.2 TotalView Users Guide 281

12
Examining and Changing Data

Displaying Variables
Displaying Program Variables

You can display local and global variables by:

g Diving into the variable in either the Source or Stack Panes.

g Selecting the View > Lookup Variable command. When prompted, enter the
name of the variable.

A Variable Window appears for the global variable. (See Figure 144 on page 282.)

Displaying Variables in the Current Block

In many cases, you’re not really interested in just seeing one variable. Instead, you
want to see all of the variables in the current block. If you dive on a block label
within the Stack Frame Pane, TotalView opens a Variable Window containing just
those variables. See Figure 145.

You can dive on any variable in this window to see more information about it.

CLI EQUIVALENT: dprint variable

FIGURE 144: Variable Window for a Global Variable
282 TotalView Users Guide Version 6.2

Examining and Changing Data

Displaying Variables
Browsing for Variables

The Process Window’s Tools > Program Browser command displays a window
containing all your executable’s components. By clicking on a library or program
name, you can access all of the variables contained within it. (See Figure 146.)

The window in the upper left corner shows programs and libraries that are loaded. If
you have loaded more than one program with the File > New Program command,
only the currently selected process list will appear. The center window contains a
list of files that make up the program as well as other related information. Diving
again on a line displays a Variable Window that contains variables and other infor-
mation related to the file. Figure 147 shows three more diving operations.

The screen in the upper-left corner shows a Variable Window created by diving on
one of the files in Figure 147. The center screen dives on a block in that subroutine.
Finally, the screen in the lower-right corner shows a variable. (These screens were
created using the View > Dive Anew command.) If you just dived on a line in a
Variable Window, the new contents replace the old contents, and you can use the
dive/undive icons to move back and forth.

FIGURE 145: Displaying Scoped Variables
Version 6.2 TotalView Users Guide 283

12
Examining and Changing Data

Displaying Variables
Displaying Local Variables and Registers

In the Stack Frame Pane, diving into a formal parameter, local variable, or register
tells TotalView to display a Variable Window. You can also dive into parameters and
local variables in the Source Pane. The displayed Variable Window shows the name,
address, data type, and value for the object. (See Figure 148 on page 285.)

FIGURE 146: Program Browser and Variables Window (Part 1)
284 TotalView Users Guide Version 6.2

Examining and Changing Data

Displaying Variables
FIGURE 147: Program Browser and Variables Window (Part 2)

FIGURE 148: Diving into Local Variables and Registers
Version 6.2 TotalView Users Guide 285

12
Examining and Changing Data

Displaying Variables
The top-left window shows the result of diving on a register, while the bottom-right
window shows the results of diving on an array variable.

You can also display a local variable by using the View > Lookup Variable com-
mand. When prompted, enter the name of the variable in the dialog box that ap-
pears.

If Variable Windows remain open while a process or thread runs, TotalView updates
the information in these windows when the process or thread stops. If TotalView
can’t find a stack frame for a displayed local variable, it displays Stale in the pane’s
header to warn you that you can’t trust the data, since the variable no longer exists.

When you debug recursive code, TotalView doesn’t automatically refocus a Variable
Window onto different instances of a recursive function. If you have a breakpoint in
a recursive function, you’ll need to explicitly open a new Variable Window to see the
value of a local variable in that stack frame.

Displaying Long Variable Names

If TotalView doesn’t have enough space to display all the characters in a variable
name, it inserts ellipses (...) to indicate that it has truncated the name. Typically,
this occurs when it is displaying demangled C++ names or STL variables.
Figure 149 shows three windows. The top-left Variable Window contains a series of
STL names. The other two windows show what TotalView displays when you click on
the ellipses. Notice that one of the windows has an Apply button. This indicates
that the field is editable.

CLI EQUIVALENT: dprint variable

This command lets you view variables and expressions with-
out having to select or find them.

CLI EQUIVALENT: dwhere, dup, and dprint

You’ll locate the stack frame using dwhere, move to it using
dup, and then display the value using dprint.
286 TotalView Users Guide Version 6.2

Examining and Changing Data

Displaying Variables
Automatic Dereferencing

In most cases, you aren’t interested in the value contained in a pointer variable. In-
stead, you want to see what the pointer is pointing to. Using the controls contained
in the File > Preferences’s Pointer Dive Page, you can tell TotalView if it should au-
tomatically dereference pointers. (See Figure 150.)

This preference is especially useful when you want to visualize data that is linked
together with pointers, as it can present the data as a unified array. Because the
data appears to be a unified array, you can use TotalView’s array manipulation com-
mands and the Visualizer to view this data.

Each pulldown list has three settings: No, Yes, and Yes (don’t push). The meaning
for No is obvious: automatic dereferencing will not occur. Both of the remaining val-
ues tell TotalView that it should automatically dereference pointers. The difference
between the two is based on whether you can use the Back command to see the
undereferenced pointer’s value. If you set this to Yes, you can see the value. Setting

FIGURE 149: Displaying Long STL Names
Version 6.2 TotalView Users Guide 287

12
Examining and Changing Data

Displaying Variables
it to Yes (don’t push) means you can’t use the Back command to see the pointer’s
value.

The three situations in which automatic dereferencing can occur are:

g When TotalView initially displays a value.

g When you dive on a value within an aggregate or structure.

g When you use the Dive in All command.

FIGURE 150: File > Preferences: Pointer Dive Page

CLI EQUIVALENT: TV::auto_array_cast_bounds
TV::auto_deref_in_all_c
TV::auto_deref_in_all_fortran
TV::auto_deref_initial_c
TV::auto_deref_initial_fortran
TV::auto_deref_nested_c
TV::auto_deref_nested_fortran
288 TotalView Users Guide Version 6.2

Examining and Changing Data

Displaying Variables
Displaying Areas of Memory

You can display areas of memory in hexadecimal and decimal values. Do this by se-
lecting the View > Lookup Variable command and then entering one of the follow-
ing in the dialog box that appears:

g A hexadecimal address
When you enter a single address, TotalView displays the word of data stored at
that address.

g A pair of hexadecimal addresses
When you enter a pair of addresses, TotalView displays the data (in word incre-
ments) from the first to the last address. To enter a pair of addresses, enter the
first address, a comma, and the last address.

NOTE All hexadecimal constants must have a “0x” prefix. You can use an expression
to enter these addresses.

The Variable Window for an area of memory displays the address and contents of
each word. (See Figure 151.)

CLI EQUIVALENT: dprint address

CLI EQUIVALENT: dprint address,address

FIGURE 151: Variable Window for Area of Memory
Version 6.2 TotalView Users Guide 289

12
Examining and Changing Data

Displaying Variables
TotalView displays the memory area’s starting location at the top of the window’s
data area. In the window, TotalView displays information in hexadecimal and deci-
mal.

Displaying Machine Instructions

You can display the machine instructions for entire routines as follows:

g Dive into the address of an assembler instruction in the Source Pane (such as
main+0x10 or 0x60). A Variable Window displays the instructions for the entire
function and highlights the instruction you dived into.

g Dive into the PC in the Stack Frame Pane. A Variable Window lists the instructions
for the entire function containing the PC, and highlights the instruction the PC
points to. (See Figure 152 on page 290.)

g Cast a variable to type <code> or array of <code>, as described in “Changing
Types to Display Machine Instructions” on page 307. (See Figure 153 on page 291.)

Closing Variable Windows

When you’re finished analyzing the information in a Variable Window, use the File >
Close command to close the window. You can also use the File > Close Similar
command to close all Variable Windows.

FIGURE 152: Variable Window with Machine Instructions
290 TotalView Users Guide Version 6.2

Examining and Changing Data

Diving in Variable Windows
Diving in Variable Windows

If the variable being displayed in a Variable Window is a pointer, structure, or array,
you can dive into a value shown in the Variable Window. This new dive, which is
called a nested dive, tells TotalView to replace the information in the Variable Window
with information about the selected variable. If this information contains non-sim-
ple data types, you can dive on these data types. While a typical data structure
doesn’t have too many levels, repeatedly diving on data lets you follow pointer
chains. That is, diving allows you to see the elements of a linked list.

TotalView remembers your dives. This means you can use the “undive” and “redive”
buttons as a convenient way to see other dive results.

Figure 154 shows a Variable Window after diving into a pointer variable named sp
with a type of simple*. The first Variable Window, which is called the base window, dis-
plays the value of sp. (This is the window in the upper left corner.)

The nested dive window—displayed in the bottom right corner of the figure—
shows the structure referenced by the simple* pointer.

FIGURE 153: Casting Code
Version 6.2 TotalView Users Guide 291

12
Examining and Changing Data

Diving in Variable Windows
You can manipulate Variable Windows and nested dive windows in the following
ways:

g To “undive” from a nested dive, select the left-facing arrow in the upper right-
hand corner of the Variable Window. After clicking on the arrow, the previous con-
tents of the Variable Window appears.

g To “redive” after you “undive,” select the right-facing arrow in the upper right-
hand corner of the Variable Window. After clicking on the arrow, TotalView per-
forms a previously executed dive operation.

g If you dive into a variable that already has a Variable Window open, the Variable
Window pops to the top of the window display.

g If you have performed several nested dives and want to create a new copy of the
base window, select the Window > Duplicate Base command.

g If you select the Window > Duplicate command, a new Variable Window ap-
pears that is a duplicate of the current Variable Window. It differs internally as it
has an empty dive stack.

FIGURE 154: Nested Dives
292 TotalView Users Guide Version 6.2

Examining and Changing Data

Diving in Variable Windows
Displaying Array of Structure Elements

The View > Dive In All command (which is also available when you right-click on a
field) allows you to display an element in an array of structures as if it were a simple
array. For example, suppose you have the following Fortran definition:

type embedded_array
real r
integer, pointer :: ia(:)

end type embedded_array

type(embedded_array) ea (3)

After selecting an r element, select the View > Dive In All command, TotalView dis-
plays all three r elements of the ea array as if it were a single array. (See Figure 155
on page 293.)

The View > Dive in All command can also display the elements of C array of struc-
tures as arrays. Figure 156 on page 294 shows TotalView displaying a unified array
of structures and a multidimensional array in a structure.

FIGURE 155: Displaying a Fortran Structure
Version 6.2 TotalView Users Guide 293

12
Examining and Changing Data

Scoping and Symbol Names
NOTE As TotalView’s array manipulation commands (which are described in Chapter 8)
work on what’s displayed and not what is stored in memory, you can operate on an array cre-
ated by this command in the same manner as any other array. For example, you can visualize
the array, obtain statistics about it, filter elements in it, and so on.

Scoping and Symbol Names

Many CLI and some GUI commands have arguments whose elements are variables
and other things found in your program. TotalView assigns a unique name to all of
your program’s element based on the scope in which the element exists. A scope de-
fines what part of a program knows about a symbol. For example, the scope of a
variable that is defined at the beginning of a subroutine is all statements in the sub-
routine. The variable’s scope does not extend outside of this subroutine. A pro-

FIGURE 156: Displaying C Structures and Arrays
294 TotalView Users Guide Version 6.2

Examining and Changing Data

Scoping and Symbol Names
gram consists of scopes. Of course, a block contained in the subroutine could have
its own definition of the same variable. This would hide the definition in the enclos-
ing scope.

All scopes are defined by your program’s structure. Except for the most trivial pro-
gram, scopes are embedded in other scopes. The exception is, of course, the top-
most scope. Every element in a program is associated with a scope.

Whenever you tell the CLI or the GUI to execute a command, TotalView consults the
program’s symbol table to discover what object you are referring to—this process
is known as symbol lookup. A symbol lookup is performed with respect to a particular
context, and each context uniquely identifies the scope to which a symbol name
refers.

Qualifying Symbol Names

The way you describe a scope is similar to the way you specify a file. The scopes in
a program form a tree, with the outermost scope, which is your program, as the
root. At the next level are executable files and dynamic libraries; further down are
compilation units (source files), procedures, modules, and other scoping units (for
example, blocks) supported by the programming language. Qualifying a symbol is
equivalent to describing the path to a file in UNIX file systems.

A symbol is fully scoped when you name all levels of its tree. The following example
shows how this is done. It also indicates parts that are optional.

[#executable-or-lib#][file#][procedure-or-line#]symbol

The pound sign (#) separates elements of the fully qualified name.

NOTE Because of the number of different kinds of things that can appear in your program,
a formal specification of what can appear and the order in which things can appear compli-
cated, and, unreadable. After you see the name, in the Stack Frame Pane, you’ll know a vari-
able’s scoped name.

TotalView interprets the components as follows:

g Just as file names need not be qualified with a full path, you do not need to use
all levels in a symbol’s scoping tree.

g If a qualified symbol begins with #, the name that follows indicates the name of
the executable or shared library (just as an absolute file path begins with a direc-
Version 6.2 TotalView Users Guide 295

12
Examining and Changing Data

Changing the Values of Variables
tory immediately within the root directory). If you omit the executable or library
component, the qualified symbol doesn’t begin with #.

g The source file’s name may appear after the (possibly omitted) executable or
shared library.

g Because programming languages typically do not let you name blocks, that por-
tion of the qualifier is specified using the letter b followed by a number indicating
which block. For example, the first unnamed block is named #b1, the second as
#b2, and so on.

You can omit any part of the scope specification that TotalView doesn’t need to
uniquely identify the symbol. Thus, foo#x identifies the symbol x in the procedure
foo. In contrast, #foo#x identifies either procedure x in executable foo or variable
x in a scope from that executable.

Similarly, #foo#bar#x could identify variable x in procedure bar in executable foo.
If bar were not unique within that executable, the name would be ambiguous unless
you further qualified it by providing a file name. Ambiguities can also occur if a file-
level variable (common in C programs) has the same name as variables declared
within functions in that file. For instance, bar.c#x refers to a file-level variable, but
the name can be ambiguous when there are different definitions of x embedded in
functions occurring in the same file. In this case, you would need to say
bar.c#b1#x to identify the scope that corresponds to the “outer level” of the file
(that is, the scope containing line 1 of the file).

Changing the Values of Variables

You can change the value of any variable or the contents of any memory location
displayed in a Variable Window by selecting the value and typing the new value. In
addition to typing a value, you can also type an expression. For example, you can
enter 1024*1024 as shown in Figure 157 on page 297. You can include logical op-
erators in all TotalView expressions.

If a value is displayed in bold in the Stack Frame Pane, you can edit the value.

CLI EQUIVALENT: set my_var [expr 1024*1024]

dassign int8_array(3) $my_var
296 TotalView Users Guide Version 6.2

Examining and Changing Data

Changing the Data Type of Variables
While TotalView does not let you directly change the value of bit fields, the Tools >
Evaluate Window lets you assign a value to a bit field. See “Evaluating Expressions” on
page 371. Similarly, you cannot directly change the value of fields in nested struc-
tures; you must first dive into the value. When TotalView displays a value in bold, it
is ready to be edited.

Changing the Data Type of Variables

The data type declared for the variable determines its format and size (amount of
memory). For example, if you declare an int variable, TotalView displays the variable
as an integer.

Topics in this section are:

FIGURE 157: Using an Expression to Change a Value

CLI EQUIVALENT: Tcl lets you use operators such as & and | to manipulate bit
fields on Tcl values.
Version 6.2 TotalView Users Guide 297

12
Examining and Changing Data

Changing the Data Type of Variables
g “Displaying C Data Types” on page 298

g “Pointers to Arrays” on page 299

g “Arrays” on page 299

g “Typedefs” on page 300

g “Structures” on page 300

g “Unions” on page 301

g “Built-In Types” on page 302

g “Type Casting Examples” on page 304

You can change the way TotalView displays data in the Variable Window by editing
its data type. This is known as casting. TotalView assigns types to all data types, and
in most cases, they are identical to their programming language counterparts.

g When a C variable is displayed in TotalView, the data types are identical to C type
representations, except for pointers to arrays. TotalView uses a simpler syntax for
pointers to arrays. (See “Pointers to Arrays” on page 299.)

g When Fortran is displayed in TotalView, the types are identical to Fortran type
representations for most data types including INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, and CHARACTER.

If the window contains a structure with a list of fields, you can edit the data types of
the fields listed in the window.

NOTE When you edit a data type, TotalView changes how it displays the variable in the cur-
rent window. Other windows listing the variable do not change.

Displaying C Data Types

TotalView’s syntax for displaying data is identical to C Language cast syntax for all
data types except pointers to arrays. That is, you should use C Language cast syn-
tax for int, short, unsigned, float, double, union, and all named struct types. In ad-
dition, TotalView has a built-in type called <string>. Unless you tell it otherwise, it
maps char arrays into this type.

TotalView types are read from right to left. For example, <string>*[20]* is a
pointer to an array of 20 pointers to <string>.
298 TotalView Users Guide Version 6.2

Examining and Changing Data

Changing the Data Type of Variables
Table 13 shows some common data types.

You can also enter C Language cast syntax verbatim in the type field for any type.

The following sections discuss the more complex types.

Pointers to Arrays

Suppose you declared a variable vbl as a pointer to an array of 23 pointers to an ar-
ray of 12 objects of type mytype_t. The C language declaration for this is:

mytype_t (*(*vbl)[23]) [12];

Here is how you would cast the vbl variable to this type:

(mytype_t (*(*)[23])[12])vbl

The TotalView cast for vbl is:

mytype_t[12]*[23]*

Arrays

Array type names can include a lower and upper bound separated by a colon (:).

By default, the lower bound for a C or C++ array is 0, and the lower bound for For-
tran is 1. In the following example, an array of ten integers is declared in C and then
in Fortran:

int a[10];
integer a(10)

The elements of the array range from a[0] to a[9] in C, while the elements of the
equivalent Fortran array range from a(1) to a(10).

Table 13: Common Types

Data Type String Meaning
int Integer
int* Pointer to integer
int[10] Array of 10 integers
<string> Null-terminated character string
<string>** Pointer to a pointer to a null-terminated character string
<string>*[20]* Pointer to an array of 20 pointers to null-terminated strings
Version 6.2 TotalView Users Guide 299

12
Examining and Changing Data

Changing the Data Type of Variables
When the lower bound for an array dimension is the default for the language,
TotalView displays only the extent (that is, the number of elements in the dimen-
sion). Consider the following Fortran array declaration:

integer a(1:7,1:8)

Since both dimensions of the array use the default lower bound for Fortran, which
is 1, TotalView displays the data type of the array by using only the extent of each
dimension, as follows:

integer(7,8)

If an array declaration doesn’t use the default lower bound, TotalView displays both
the lower bound and upper bound for each dimension of the array. For example, in
Fortran, you would declare an array of integers with the first dimension ranging
from –1 to 5 and the second dimension ranging from 2 to 10, as follows:

integer a(-1:5,2:10)

TotalView displays this in exactly the same way.

When editing an array’s dimension, you can enter just the extent (if using the de-
fault lower bound) or you can enter the lower and upper bounds separated by a co-
lon.

TotalView also lets you display a subsection of an array, or filter a scalar array for
values matching a filter expression. Refer to “Displaying Array Slices” on page 319
and “Array Data Filtering” on page 324 for further information.

Typedefs

TotalView recognizes the names defined with typedef, and displays these user-de-
fined types. For example:

typedef double *dptr_t;
dptr_t p_vbl;

TotalView will display the type for p_vbl as dptr_t.

Structures

TotalView lets you use the struct keyword as part of a type string. In all cases, it is
usually optional. If you have a structure and another data type with the same name,
300 TotalView Users Guide Version 6.2

Examining and Changing Data

Changing the Data Type of Variables
however, you must include the struct keyword so that TotalView can distinguish be-
tween the two data types.

If you name a structure using typedef, the debugger uses the typedef name as the
type string. Otherwise, the debugger uses the structure tag for the struct.

For example, consider the structure definition:

typedef struct mystruc_struct {
int field_1;
int field_2;

} mystruc_type;

TotalView displays mystruc_type as the type for struct mystruc_struct.

Unions

TotalView displays a union in the same way that it displays a structure. Even though
the fields of a union are overlaid in storage, TotalView displays the fields on sepa-
rate lines. (See Figure 158.)

When TotalView displays some complex arrays and structures, it displays the com-
pound object or array types in the Variable Window.

NOTE Editing the compound object or array types could yield undesirable results.

CLI EQUIVALENT: dprint variable

FIGURE 158: Displaying a Union
Version 6.2 TotalView Users Guide 301

12
Examining and Changing Data

Changing the Data Type of Variables
Built-In Types

TotalView provides a number of predefined types. These types are enclosed in angle
brackets (<>) to avoid conflict with types contained in a programming language.
You can use these built-in types anywhere you can use ones defined in your pro-
gramming language. These types are also useful when debugging executables with
no debugging symbol table information. The following table lists the built-in types.

Table 14: Built-In Types

Type String Language Size Meaning
<address> C void* Void pointer (address)
<char> C char Character
<character> Fortran character Character
<code> C architecture-

dependent
Machine instructions

The size used here is the number of
bytes required to hold the shortest
instruction for your computer.

<complex> Fortran complex Single-precision floating-point
complex number.

complex types contain a real part and
an imaginary part, which are both of
type real.

<complex*8> Fortran complex*8 real*4-precision floating-point
complex number

complex*8 types contain a real part
and an imaginary part, which are both
of type real*4.

<complex*16> Fortran complex*16 real*8-precision floating-point
complex number

complex*16 types contain a real
part and an imaginary part, which are
both of type real*8.

<double> C double Double-precision floating-point
number

<double
precision>

Fortran double
precision

Double-precision floating-point
number
302 TotalView Users Guide Version 6.2

Examining and Changing Data

Changing the Data Type of Variables
The next sections contain more information about the following built-in types:

g Character Arrays (<string> Data Type)

g Areas of Memory (<void> Data Type)

g Instructions (<code> Data Type)

<extended> C long double Extended-precision floating-point
number

Extended-precision numbers must be
supported by the target architecture.

<float> C float Single-precision floating-point number
<int> C int Integer
<integer> Fortran integer Integer
<integer*1> Fortran integer*1 One-byte integer
<integer*2> Fortran integer*2 Two-byte integer
<integer*4> Fortran integer*4 Four-byte integer
<integer*8> Fortran integer*8 Eight-byte integer
<logical> Fortran logical Logical
<logical*1> Fortran logical*1 One-byte logical
<logical*2> Fortran logical*2 Two-byte logical
<logical*4> Fortran logical*4 Four-byte logical
<logical*8> Fortran logical*8 Eight-byte logical
<long> C long Long integer
<long long> C long long Long long integer
<real> Fortran real Single-precision floating-point number

NOTE When using a value such as
real, be careful that the actual data
type used by your computer is not
real*4 or real*8 as different results
could occur.

<real*4> Fortran real*4 Four-byte floating-point number
<real*8> Fortran real*8 Eight-byte floating-point number
<real*16> Fortran real*16 Sixteen-byte floating-point number
<short> C short Short integer
<string> C char Array of characters
<void> C long Area of memory

Table 14: Built-In Types (cont.)

Type String Language Size Meaning
Version 6.2 TotalView Users Guide 303

12
Examining and Changing Data

Changing the Data Type of Variables
Character Arrays (<string> Data Type)
If you declare a character array as char vbl[n], TotalView automatically changes the
type to <string>[n]; that is, a null-terminated, quoted string with a maximum
length of n. This means that TotalView will display an array as a quoted string of n
characters, terminated by a null character. Similarly, TotalView changes char* decla-
rations to <string>* (a pointer to a null-terminated string).

Since most C character arrays represent strings, the <string> type can be very
convenient. If this isn’t what you want, you can edit the <string> back to a char
(or char[n]) to display the variable as you declared it.

Areas of Memory (<void> Data Type)
TotalView uses the <void> type for data of an unknown type, such as the data
contained in registers or in an arbitrary block of memory. The <void> type is simi-
lar to the int in the C language.

If you dive into registers or display an area of memory, TotalView lists the contents
as a <void> data type. Furthermore, if you display an array of <void> variables,
the index for each object in the array is the address, not an integer. This address
can be useful in displaying large areas of memory.

If desired, you can change a <void> into another type. Similarly, you can change
any type into a <void> to see the variable in decimal and hexadecimal formats.

Instructions (<code> Data Type)
TotalView uses the <code> data type to display the contents of a location as ma-
chine instructions. Thus, to look at disassembled code stored at a location, dive on
the location and change the type to <code>. To specify a block of locations, use
<code>[n], where n is the number of locations being displayed.

Type Casting Examples

This section contains three type casting examples:

g Displaying the argv Array

g Displaying Declared Arrays

g Displaying Allocated Arrays
304 TotalView Users Guide Version 6.2

Examining and Changing Data

Changing the Data Type of Variables
Displaying the argv Array
Typically, argv is the second argument passed to main(), and it is either a char
**argv or char *argv[]. Suppose argv points to an array of three pointers to char-
acter strings. Here is how you can edit its type to display an array of three pointers:

1 Select the type string for argv.

2 Edit the type string using the field editor commands. Change it to:

<string>*[3]*

3 To display the array, dive into the value field for argv. (See Figure 159 on
page 305.)

CLI EQUIVALENT: dprint argv

CLI EQUIVALENT: dprint (<string>*\[3\]*)argv

FIGURE 159: Editing argv
Version 6.2 TotalView Users Guide 305

12
Examining and Changing Data

Working with Opaque Data
Displaying Declared Arrays
TotalView displays arrays in the same way as it displays local and global variables. In
the Stack Frame or Source Pane, dive into the declared array. A Variable Window
displays the elements of the array.

Displaying Allocated Arrays
The C language uses pointers for dynamically allocated arrays. For example:

int *p = malloc(sizeof(int) * 20);

Because TotalView doesn’t know that p actually points to an array of integers, here
is how you would display the array:

1 Dive on the variable p of type int*.

2 Change its type to int[20]*.

3 Dive on the value of the pointer to display the array of 20 integers.

Working with Opaque Data

An opaque type is a data type that isn’t fully specified, is hidden, or whose declara-
tion is deferred. For example, the following C declaration defines the data type for p
as a pointer to struct foo, which is not yet defined:

struct foo;
struct foo *p;

When TotalView encounters this kind of information, it may indicate that foo’s data
type is <opaque>. For example:

struct foo <opaque>

Changing the Address of Variables

You can edit the address of a variable in a Variable Window. When you edit the ad-
dress, the Variable Window shows the contents of the new location.

You can also enter an address expression, such as 0x10b8 – 0x80.

CLI EQUIVALENT: dprint array-name
306 TotalView Users Guide Version 6.2

Examining and Changing Data

Changing Types to Display Machine Instructions
Changing Types to Display Machine Instructions

Here is how you can display machine instructions in a Variable Window:

1 Select the type string at the top of the Variable Window.

2 Change the type string to be an array of <code> data types, where n indi-
cates the number of instructions to be displayed. For example:

<code>[n]

TotalView displays the contents of the current variable, register, or area of mem-
ory as machine-level instructions.

The Variable Window (shown in Figure 152 on page 290) lists the following infor-
mation about each machine instruction:

Address The machine address of the instruction.

Value The hexadecimal value stored in the location.

Disassembly The instruction and operands stored in the location.

Offset+Label The symbolic address of the location as a hexadecimal offset
from a routine name.

You can also edit the value listed in the Value field for each machine instruction.

Displaying C++ Types

Classes

TotalView displays C++ classes and accepts class as a keyword. When you debug
C++, TotalView also accepts the unadorned name of a class, struct, union, or enum
in the type field. TotalView displays nested classes that use inheritance, showing
derivation by indentation.

NOTE Some C++ compilers do not output accessibility information. In these cases, the in-
formation is omitted from the display.

For example, Figure 160 displays an object of a class c.
Version 6.2 TotalView Users Guide 307

12
Examining and Changing Data

Displaying C++ Types
The definition is as follows:

class b {
char * b_val;

public:
b() {b_val = “b value“;}

};

class d : virtual public b {
char * d_val;

public:
d() {d_val = “d value“;}

};

class e {
char * e_val;

public:
e() {e_val = “e value“;}

};

class c : public d, public e {
char * c_val;

public:
c() {c_val = “c value“;}

};

FIGURE 160: Displaying C++ Classes That Use Inheritance
308 TotalView Users Guide Version 6.2

Examining and Changing Data

Displaying C++ Types
Changing Class Types in C++

TotalView tries to display the correct data when you change the type of a Variable
Window as it and you move up or down the derivation hierarchy.

If a change in the data type also requires a change in the address of the data being
displayed, TotalView asks you about changing the address. For example, if you edit
a Variable Window’s Type field from class c to class e, TotalView displays the follow-
ing dialog box.

Selecting Yes tells TotalView to change the address to ensure that it displays the
correct base class member. Selecting No tells TotalView to display the memory area
as if it were an instance of the type to which it is being cast, leaving the address un-
changed.

Similarly, if you change a data type in the Variable Window because you want to cast
a base class to a derived class, and that change requires an address change,
TotalView asks that you confirm the address change. For example, Figure 162
shows the dialog posted if you cast from class e to class c.

FIGURE 161: C++ Type Cast to Base Class Question Window

FIGURE 162: C++ Type Cast to Derived Class Question Window
Version 6.2 TotalView Users Guide 309

12
Examining and Changing Data

Displaying Fortran Types
Displaying Fortran Types

TotalView allows you to display FORTRAN 77 and Fortran 90 data types.

Topics in this section are:

g “Displaying Fortran Common Blocks” on page 310

g “Displaying Fortran Module Data” on page 310

g “Debugging Fortran 90 Modules” on page 312

g “Fortran 90 User-Defined Types” on page 314

g “Fortran 90 Deferred Shape Array Types” on page 314

g “Fortran 90 Pointer Types” on page 315

g “Displaying Fortran Parameters” on page 315

Displaying Fortran Common Blocks

For each common block defined within the scope of a subroutine or function,
TotalView creates an entry in that function’s common block list. The Stack Frame
Pane displays the name of each common block for a function. The names of com-
mon block members have function scope, not global scope.

If you dive on a common block name in the Stack Frame Pane, TotalView displays
the entire common block in a Variable Window, as shown in Figure 163 on
page 311.

The top-left pane shows a common block list in a Stack Frame Pane. The bottom
right window shows the results of diving on the common block to see its elements.

If you dive on a common block member name, TotalView searches all common
blocks in the function’s scope for a matching member name and displays the mem-
ber in a Variable Window.

Displaying Fortran Module Data

TotalView tries to locate all data associated with a Fortran module and provide a
single display that contains all of it. For functions and subroutines defined in a

CLI EQUIVALENT: dprint variable-name
310 TotalView Users Guide Version 6.2

Examining and Changing Data

Displaying Fortran Types
module, TotalView adds the full module data definition to the list of modules dis-
played in the Stack Frame Pane.

NOTE TotalView only displays a module if it contains data. Also, the amount of information
that your compiler gives TotalView may restrict what’s displayed.

FIGURE 163: Diving into a Common Block List in the Stack Frame Pane

CLI EQUIVALENT: dprint variable-name
Version 6.2 TotalView Users Guide 311

12
Examining and Changing Data

Displaying Fortran Types
Although a function may use a module, TotalView doesn’t always know if the mod-
ule was used or what the true names of the variables in the module are. If this hap-
pens, either:

g Module variables appear as local variables of the subroutine.

g A module appears on the list of modules in the Stack Frame Pane that contains
(with renaming) only the variables used by the subroutine.

Alternatively, you can view a list of all the known modules by using the Tools >
Fortran Modules command. Like in any Variable Window, you can dive through an
entry to display the actual module data, as shown in Figure 164 on page 313.

NOTE If you are using the SUNPro compiler, TotalView can only display module data if you
force it to read the debug information for a file that contains the module definition or a mod-
ule function. For more information, see “Finding the Source Code for Functions” on page 213.

Debugging Fortran 90 Modules

Fortran 90 and Fortran 95 let you place functions, subroutines, and variables inside
modules. These modules can then be included elsewhere using a USE command.
When doing this, the names in the module become available in the using compila-
tion unit, unless you exclude them with a USE ONLY statement, or rename them.
This means that you don’t need to explicitly qualify the name of a module function
or variable from the Fortran source code.

When debugging this kind of information, you will need to know the location of the
function being called. Consequently, TotalView uses the following syntax when it
displays a function contained in a module:

modulename`functionname

You can also use this syntax in the File > New Program and View > Lookup
Variable commands.

Fortran 90 also introduced the idea of a contained function that is only visible in
the scope of its parent and siblings. There can be many contained functions in a
program, all using the same name. If the compiler gave TotalView the function name
for a nested function, TotalView displays it using the following syntax:
312 TotalView Users Guide Version 6.2

Examining and Changing Data

Displaying Fortran Types
parentfunction()`containedfunction

FIGURE 164: Fortran Modules Window

CLI EQUIVALENT: dprint module_name‘variable_name

Dive on module
name to see
Variable
Window
containing
module
variables

Dive on module
variable to see a
Variable
Window with
more detail

or
Version 6.2 TotalView Users Guide 313

12
Examining and Changing Data

Displaying Fortran Types
Fortran 90 User-Defined Types

A Fortran 90 user-defined type is similar to a C structure. TotalView displays a user-
defined type as type(name), which is the same syntax used in Fortran 90 to create a
user-defined type. For example, here is a code fragment that defines a variable typ2
of type(whopper):

TYPE WHOPPER
LOGICAL, DIMENSION(ISIZE) :: FLAGS
DOUBLE PRECISION, DIMENSION(ISIZE) :: DPSA
DOUBLE PRECISION, DIMENSION(:), POINTER :: DPPA

END TYPE WHOPPER

TYPE(WHOPPER), DIMENSION(:), ALLOCATABLE :: TYP2

TotalView displays this code as shown in Figure 165.

Fortran 90 Deferred Shape Array Types

Fortran 90 allows you to define deferred shape arrays and pointers. The actual
bounds of the array are not determined until the array is allocated, the pointer is
assigned, or, in the case of an assumed shape argument to a subroutine, the sub-
routine is called. TotalView displays the type of deferred shape arrays as type(:).

When TotalView displays the data for a deferred shape array, it displays the type
used in the definition of the variable and the actual type that this instance of the
variable has. The actual type is not editable since you can achieve the same effect

FIGURE 165: Fortran 90 User-Defined Type
314 TotalView Users Guide Version 6.2

Examining and Changing Data

Displaying Fortran Types
by editing the definition’s type. The following example shows the type of a deferred
shape rank 2 array of real data with runtime lower bounds of –1 and 2, and upper
bounds of 5 and 10:

Type: real(:,:)
Actual Type: real(-1:5,2:10)

Slice: (:,:)

Fortran 90 Pointer Types

A Fortran 90 pointer type allows you to point to scalar or array types.

TotalView implicitly handles slicing operations that set up a pointer or assumed
shape subroutine argument so that indices and values it displays in a Variable Win-
dow are the same as you would see in the Fortran code. For example:

integer, dimension(10), target :: ia
integer, dimension(:), pointer :: ip
do i = 1,10

ia(i) = i
end do
ip => ia(10:1:-2)

After diving through the ip pointer, TotalView displays the window shown in
Figure 166 on page 316.

Notice that the address displayed is not that of the array’s base. Since the array’s
stride is negative, array elements that follow are at lower absolute addresses. Con-
sequently, the address displayed is that of the array element having the lowest in-
dex. This may not be the first displayed element if you used a slice to display the
array with reversed indices.

Displaying Fortran Parameters

A Fortran PARAMETER defines a named constant. Most compilers do not generate
information that TotalView can use to determine what a PARAMETER’s value is. This
means that you must make a few changes to your program if you want to see this
kind of information.
Version 6.2 TotalView Users Guide 315

12
Examining and Changing Data

Displaying Fortran Types
If you’re using Fortran 90, you can define variables in a module that you initialize to
the value of these PARAMETER constants. For example:

INCLUDE ‘PARAMS.INC’

MODULE CONSTS
SAVE
INTEGER PI_C = PI
...

END MODULE CONSTS

The PARAMS.INC file will contain your parameter definitions. You would then use
these parameters to initialize variables in a module. After you compile and link this
module into your program, the value of these parameter variables are visible.

If you’re using Fortran 77, you could achieve the same results if you make the as-
signments in a common block and then include the block in main(). You could also
use a block data subroutine to access this information.

FIGURE 166: Fortran 90 Pointer Value

➊ Target array ia
➋ Pointer ip into array ia
➌ Address of ip(1)
➍ Values reflect slice

➊

➋

➌

➍

316 TotalView Users Guide Version 6.2

Examining and Changing Data

Displaying Thread Objects
Displaying Thread Objects

On HP Alpha Tru64 UNIX and IBM AIX systems, TotalView can display information
about mutexes and conditional variables. In addition, TotalView can display infor-
mation on read/write locks and data keys on IBM AIX. You can obtain this informa-
tion by selecting the Tools > Thread Objects command. After selecting this
command, TotalView displays a window that will either contain two tabs (HP Alpha)
or four tabs (IBM). Figure 167 on page 318 shows some AIX examples.

Diving on a any line in these windows displays a Variable Window containing addi-
tional information about the item.

Here are some things you should know:

g If you’re displaying data keys, many applications initially set keys to 0 (the NULL
pointer value). TotalView doesn’t display a key’s information, however, until a
thread sets a non-NULL value to the key.

g If you select a thread ID in a data key window, you can dive on it using the View
> Dive Thread and View > Dive Thread New commands to display a Process
Window for that thread ID.

The online Help contains considerable information on the contents of these win-
dows.
Version 6.2 TotalView Users Guide 317

12
Examining and Changing Data

Displaying Thread Objects
FIGURE 167: Thread Objects Page on an IBM AIX machine
318 TotalView Users Guide Version 6.2

Version 6.2
Chapter 13
Examining Arrays
This chapter explains how to examine and change data as you debug your program. You
will learn about the following:

g “Examining and Analyzing Arrays” on page 319
g “Displaying a Variable in All Processes or Threads” on page 333
g “Visualizing Array Data” on page 335

Examining and Analyzing Arrays

TotalView can quickly display very large arrays in Variable Windows. An array can be
the elements that you’ve defined in your program or it can be an area of memory
that you’ve cast into an array.

If an array overlaps nonexistent memory, the initial portion of the array is correctly
formatted. If memory isn’t allocated for an array element, TotalView displays Bad
Address in the element’s subscript.

Topics in this section are:

g “Displaying Array Slices” on page 319

g “Array Data Filtering” on page 324

g “Sorting Array Data” on page 330

g “Obtaining Array Statistics” on page 331

Displaying Array Slices

TotalView lets you display array subsections by editing the slice field in an array’s
Variable Window. (An array subsection is called a slice.) The slice field contains place-
TotalView Users Guide 319

13
Examining Arrays

Examining and Analyzing Arrays
holders for all array dimensions. For example, here is a C declaration for a three-di-
mensional array:

integer an_array[10][20][5]

Because this is a three-dimensional array, the initial slice definition is [:][:][:]. This
lets you know that the array has three dimensions and that TotalView is displaying
all array elements.

Here is a deferred shape array definition for a two-dimensional array variable:

integer, dimension (:,:) :: another_array

Its TotalView slice definition is (:,:).

As you can see, TotalView displays as many colons (:) as there are array dimensions.
For example, the slice definition for a one-dimensional array (a vector) is [:] for C ar-
rays and (:) for Fortran arrays.

Using Slices and Strides
A slice definition has the following form:

lower_bound:upper_bound:stride

(The stride tells TotalView that it should skip over elements and not display them.
Adding a stride to a slice tells TotalView to display every stride element of the array,
starting at the lower_bound and continuing through the upper_bound, inclusive.

For example, a slice of [0:9:9] used on a 10-element C array tells TotalView to dis-
play the first element and last element, which is the ninth element beyond the
lower bound.

If the stride is negative and the upper bound is greater than the lower bound,
TotalView lets you view a dimension with reversed indexing. That is, TotalView treats
the slice as if it were:

[ub : lb : stride]

CLI EQUIVALENT: dprint an_array\[n:m,p:q\]

dprint an_array(n:m,p:q)

CLI EQUIVALENT: dprint an_array(n:m:p,q:r:s)
320 TotalView Users Guide Version 6.2

Examining Arrays

Examining and Analyzing Arrays
For example, the following definition tells TotalView to display an array beginning at
its last value and moving to its first:

[::-1]

In contrast, Fortran 90 requires that you explicitly enter the upper and lower
bounds when you’re reversing the order in which it displays array elements.

Because the default value for the stride is 1, you can omit the stride (and the colon
that precedes it) if your stride value is 1. For example, the following two definitions
display array elements 0 through 9:

[0:9:1]
[0:9]

If the lower and upper bounds are the same, just use a single number. For example,
the following two definitions tell TotalView to display array element 9:

[9:9:1]
[9]

NOTE The lower_bound, upper_bound, and stride can only be constants.

Example 1: A slice declaration of [::2] for a C or C++ array (with a default
lower bound of 0) tells TotalView to display elements with even indices of the array:
0, 2, 4, and so on. However, if this were defined for a Fortran array (where the de-
fault lower bound is 1), TotalView displays elements with odd indices of the array: 1,
3, 5, and so on.

Example 2: Figure 168 on page 322 displays a slice of (::9,::9). This definition
displays the four corners of a 10-element by 10-element Fortran array.

Example 3: You can use a stride to invert the order and skip elements. For ex-
ample, here is a slice that begins with the upper bound of the array and display ev-
ery other element until it reaches the lower bound of the array: (::–2). Thus, using
(::–2) with a Fortran integer(10) array tells TotalView to display the elements 10, 8,
6, 4, and 2.

Example 4: You can simultaneously invert the array’s order and limit its extent
to display a small section of a large array. Figure 169 shows how to specify a
(2:3,7::–1) slice with an integer*4(–1:5,2:10) Fortran array.
Version 6.2 TotalView Users Guide 321

13
Examining Arrays

Examining and Analyzing Arrays
After you enter this slice value, TotalView only shows elements in rows 2 and 3 of
the array, beginning with column 10 and ending with column 7.

Using Slices in the Lookup Variable Command
When you use the View > Lookup Variable command to display a Variable Window,
you can include a slice expression as part of the variable name. Specifically, if you
type an array name followed by a set of slice descriptions in the View > Lookup
Variable command’s dialog box, TotalView initializes the slice field in the Variable
Window to this slice descriptions.

If you add subscripts to an array name in the View > Lookup Variable command’s
dialog box, TotalView interprets these subscripts as a slice description rather than

FIGURE 168: Slice Displaying the Four Corners of an Array

FIGURE 169: Fortran Array with Inverse Order and Limited Extent
322 TotalView Users Guide Version 6.2

Examining Arrays

Examining and Analyzing Arrays
as a request to display an individual value of the array. As a result, you can display
different values of the array by changing the slice expression.

For example, suppose that you have a 10-element by 10-element Fortran array
named small_array, and you want to display element (5,5). Using the View >
Lookup Variable command, type small_array(5,5). This sets the initial slice to
(5:5,5:5). This is the top-left screen in Figure 170.

You can tell TotalView to display one of the array’s values by enclosing the array
name and subscripts (that is, the information normally included in a slice expres-
sion) within parentheses, such as (small_array(5,5)).

In this case, the Variable Window just displays the type and value of the element
and doesn’t show its array index. This is shown in the center screen in Figure 170.

CLI EQUIVALENT: dprint small_array(5,5)

CLI EQUIVALENT: dprint (small_array(5,5))

FIGURE 170: Variable Window for small_array
Version 6.2 TotalView Users Guide 323

13
Examining Arrays

Examining and Analyzing Arrays
Perhaps the most interesting of the screens in Figure 170 on page 323 is the one in
the bottom-right corner. This was created by doing a View > Lookup Variable with
a value of small_array(i,j). Here, TotalView evaluated the values of i and j before it
displayed the window. If you do this, you should know that the values of i and j are
just computed once. This means that if the values of i and j change, the displayed
value will not change.

Array Data Filtering

You can restrict what TotalView displays in a Variable Window by adding a filter to
the window. You can filter arrays of type character, integer, or floating point. Your fil-
tering options are:

g Arithmetic comparison to a constant value

g Equal or not equal comparison to IEEE NANs, INFs, and DENORMs

g Within a range of values, inclusive or exclusive

g General expressions

When an element of an array matches the filter expression, TotalView includes the
element in the Variable Window display.

Topics in this section are:

g “Filtering Array Data” on page 324

g “Filtering by Comparison” on page 325

g “Filtering for IEEE Values” on page 326

g “Filtering By a Range of Values” on page 327

g “Creating Array Filter Expressions” on page 329

g “Using Filter Comparisons” on page 329

Filtering Array Data
The procedure for filtering an array is quite simple: select the Filter field, enter the
array filter expression, and then press Return.

TotalView updates the Variable Window to exclude only the elements that do not
match the filter expression.
324 TotalView Users Guide Version 6.2

Examining Arrays

Examining and Analyzing Arrays
TotalView only displays an element if its value matches the filter expression and the
slice operation.

If necessary, TotalView converts the array element before evaluating the filter ex-
pression. The following conversion rules apply:

g If the filter operand or array element type is floating point, TotalView converts it
to a double-precision floating-point value. TotalView truncates extended-preci-
sion values to double precision. Converting integer or unsigned integer values to
double-precision values may result in a loss of precision. TotalView converts un-
signed integer values to non-negative double-precision values.

g If the filter operand or the array element is an unsigned integer, TotalView con-
verts the values to an unsigned 64-bit integer.

g If both the filter operand and array element are of type integer, TotalView con-
verts the values to type 64-bit integer.

These conversions modify a copy of the array’s elements—they never alter the
actual array elements.

To stop filtering an array, delete the contents of the Filter field in the Variable Win-
dow and press Return. TotalView will then update the Variable Window so that it in-
cludes all elements.

Filtering by Comparison
The simplest filters are ones whose formats are:

operator value

where operator is either a C/C++ or Fortran-style comparison operator, and value is a
signed or unsigned integer constant, or a floating-point number. For example,
here’s the filter for displaying all values greater than 100:

> 100

Table 15 lists the comparison operators.

Table 15: Array Data Filtering Comparison Operators

Comparison C/C++ Operator Fortran Operator
Equal == .eq.
Not equal != .ne.
Less than < .lt.
Version 6.2 TotalView Users Guide 325

13
Examining Arrays

Examining and Analyzing Arrays
Figure 171 shows an array whose filter is “< 0”. This indicates that TotalView should
only display array elements whose value is less than 0 (zero).

If the value you’re using in the comparison is an integer constant, TotalView per-
forms a signed comparison. If you add a u or U to the constant, TotalView performs
an unsigned comparison.

Filtering for IEEE Values
You can filter IEEE NaN, infinity, or denormalized floating-point values by specifying
a filter in the following form:

operator ieee-tag

The only comparison operators you can use are equal and not equal.

Less than or equal <= .le.
Greater than > .gt.
Greater than or equal >= .ge.

FIGURE 171: Array Data Filtering by Comparison

Table 15: Array Data Filtering Comparison Operators (cont.)

Comparison C/C++ Operator Fortran Operator
326 TotalView Users Guide Version 6.2

Examining Arrays

Examining and Analyzing Arrays
The ieee-tag represents an encoding of IEEE floating-point values, as explained in
the following table:

Figure 172 on page 328 shows an example of filtering an array for IEEE values. The
bottom left Variable Window shows how TotalView displays the unfiltered array. No-
tice the NANQ, and NANS, INF, and –INF values. Then other two windows show fil-
tered displays. The top left window only shows infinite values. The center window
only shows the values of denormalized numbers.

Filtering By a Range of Values
Specify ranges as follows:

[>] low-value : [<] high-value

where low-value specifies the lowest value to include, and high-value specifies the
highest value to include, separated by a colon. The high and low values are inclu-
sive unless you use < and > symbols. If you specify a > before low-value, the low
value is exclusive. Similarly, a < before high-value makes it exclusive.

low-value and high-value must be constants of type integer, unsigned integer, or float-
ing point. The data type of low-value must be the same as the type of high-value, and
low-value must be less than high-value. If low-value and high-value are integer con-
stants, you can append a u or U to the value to force an unsigned comparison.
Figure 173 on page 328 shows a filter that tells TotalView that it should only dis-
play values equal to or greater than 64 but less than 512.

Table 16: Array Data Filtering IEEE Tag Values

IEEE Tag Value Meaning
$nan NaN (Not a number), either Quiet or Signaling
$nanq Quiet NaN
$nans Signaling NaN
$inf Infinity, either Positive or Negative
$pinf Positive Infinity
$ninf Negative Infinity
$denorm Denormalized number, either positive or negative
$pdenorm Positive denormalized number
$ndenorm Negative denormalized number
Version 6.2 TotalView Users Guide 327

13
Examining Arrays

Examining and Analyzing Arrays
FIGURE 172: Array Data Filtering for IEEE Values

FIGURE 173: Array Data Filtering by Range of Values
328 TotalView Users Guide Version 6.2

Examining Arrays

Examining and Analyzing Arrays
Creating Array Filter Expressions
The filtering capabilities described in the previous sections are those that you will
most often use. In some circumstances, you may need to create a more general ex-
pression. When you create a filter expression, you’re creating a Fortran or C Bool-
ean expression that TotalView evaluates for every element in the array or the array
slice. For example, here is an expression that displays all array elements whose
contents are greater than 0 and less than 50 or greater than 100 and less than 150.

($value > 0 && $value < 50) ||
($value > 100 && $value < 150)

Here’s the Fortran equivalent:

($value .gt. 0 && $value .lt. 50) .or.
($value .gt. 100 .and. $value .lt.150)

$value is a special TotalView variable that represents the current array element. You
can now use this value when creating expressions.

Notice also the use of the and and or operators within the expression. The way in
which TotalView computes the results of an expression is identical to the way it
computes values at an evaluation point. For more information, see “Defining Evalua-
tion Points and Conditional Breakpoints” on page 354.

NOTE You cannot use any of the IEEE tag values described in “Filtering for IEEE Values” on
page 326 in these kinds of expressions.

Using Filter Comparisons
TotalView lets you filter array information in a variety of ways. This means that you
can do the same thing in more than one way. For example, the following two filters
display the same array items:

> 100
$value > 100

Similarly, the following expression displays the same array items:

>0:<100
$value > 0 && $value < 100
Version 6.2 TotalView Users Guide 329

13
Examining Arrays

Examining and Analyzing Arrays
The only difference is that the first method is easier to type than the second. In
general, you’d only use the second method when you’re creating more complicated
expressions.

Sorting Array Data

TotalView lets you sort the displayed array data into ascending or descending order.
(It does not, of course, sort the actual data.)

If you select the Variable Window’s View > Sort > Ascending command, TotalView
places all of the array’s elements in ascending order. (See Figure 174 for an
example.)

As you would expect, View > Sort > Descending places array elements into de-
scending order. The View > Sort > None command returns the array to its original
order.

The sort commands only manipulate the displayed elements. This means that if you
limit the number of elements by defining a slice or a filter, TotalView only sorts the
result of the filtering and slicing operations.

FIGURE 174: Sorted Variable Window
330 TotalView Users Guide Version 6.2

Examining Arrays

Examining and Analyzing Arrays
Obtaining Array Statistics

The Tools > Statistics command displays a window containing information about
your array. Figure 175 shows an example.

If you have added a filter or a slice, these statistics only describe the information
currently being displayed; they do not describe the entire unfiltered array. For ex-
ample, if 90% of an array’s values are less than 0 and you filter the array to show
only values greater than zero, the median value will be positive even though the ar-
ray’s real median value is less than zero.

The statistics TotalView displays are as follows:

g Checksum
A checksum value for the array elements.

g Count
The total number of displayed array values. If you’re displaying a floating-point
array, this number doesn’t include NaN or Infinity values.

FIGURE 175: Array Statistics Window
Version 6.2 TotalView Users Guide 331

13
Examining Arrays

Examining and Analyzing Arrays
g Denormalized Count
A count of the number of denormalized values found in a floating-point array.
This includes both negative and positive denormalized values as defined in the
IEEE floating-point standard. Unlike other floating-point statistics, these ele-
ments participate in the statistical calculations.

g Infinity Count
A count of the number of infinity values found in a floating-point array. This in-
cludes both negative and positive infinity as defined in the IEEE floating-point
standard. These elements don’t participate in statistical calculations.

g Lower Adjacent
This value provides an estimate of the lower limit of the distribution. Values be-
low this limit are called outliers. The lower adjacent value is the first quartile value
minus 1.5 times the difference between the first and third quartiles.

g Maximum
The largest array value.

g Mean
The average value of array elements.

g Median
The middle value. Half of the array’s values are less than the median, and half are
greater than the median.

g Minimum
The smallest array value.

g NaN Count
A count of the number of NaN values found in a floating-point array. This in-
cludes both signaling and quiet NaNs as defined in the IEEE floating-point stan-
dard. These elements don’t participate in statistical calculations.

g Quartiles, First and Third
Either the 25th or 75th percentile values. The first quartile value means that 25%
of the array’s values are less than this value and 75% are greater than this value.
In contrast, the fourth quartile value means that 75% of the array’s values are
less than this value and 25% are greater.

g Standard Deviation
The standard deviation for the array’s values.

g Sum
The sum of all of the displayed array’s values.
332 TotalView Users Guide Version 6.2

Examining Arrays

Displaying a Variable in All Processes or Threads
g Upper Adjacent
This value provides an estimate of the upper limit of the distribution. Values
above this limit are called outliers. The upper adjacent value is the third quartile
value plus 1.5 times the difference between the first and third quartiles.

g Zero Count
The number of elements whose value is 0.

Displaying a Variable in All Processes or Threads

When you’re debugging a parallel program that is running many instances of the
same executable, you usually need to view or update the value of a variable in all of
the processes or threads at once.

Before displaying a variable’s value in all threads or processes, you must display an
instance of the variable in a Variable Window. After TotalView displays this window,
use one of the following commands:

g View > Laminate > Process, which displays the value of the variable in all of the
processes.

g View > Laminate > Thread, which displays the value of a variable in all threads
within a single process.

NOTE You cannot simultaneously laminate across processes and threads in the same Vari-
able Window.

After using one of these commands, the Variable Window switches to “laminated”
mode, and displays the value of the variable in each process or thread. Figure 176
on page 334 shows a simple, scalar variable in each of the processes in an
OpenMP program. Notice that the first six have a variable in a matching call frame.
The corresponding variable can’t be found for the seventh thread.

If you decide that you no longer want the pane to be laminated, select the View >
Laminate > None command to delaminate it.

When looking for a matching call frame, TotalView matches frames starting from the
top frame, and considers calls from different memory or stack locations to be dif-
ferent calls. For example, the following definition of recurse contains two additional
calls to recurse. Each of these generate nonmatching call frames.
Version 6.2 TotalView Users Guide 333

13
Examining Arrays

Displaying a Variable in All Processes or Threads
void recurse(int i) {
if (i <= 0)

return;
if (i & 1)

recurse(i – 1);
else

recurse(i – 1);
}

If the variables are at different addresses in the different processes or threads, the
address field at the top of the pane displays (Multiple) and the unique addresses
are displayed with each data item, as was shown in Figure 176.

TotalView also allows you to laminate arrays and structures. When you laminate an
array, TotalView displays each element in the array across all processors. You can
use a slice to select elements to be displayed in laminated windows. Figure 177 on
page 335 shows an example of a laminated array and a laminated structure. You
can also laminate an array of structures.

Diving in a Laminated Pane

You can dive through pointers in a laminated Variable Window, and the dive will ap-
ply to the associated pointer in each process or thread.

FIGURE 176: Laminated Scalar Variable
334 TotalView Users Guide Version 6.2

Examining Arrays

Visualizing Array Data
Editing a Laminated Variable

If you edit a value in a laminated Variable Window, TotalView asks if it should apply
this change to all of the processes or threads or only the one in which you made a
change. This is an easy way to update a variable in all processes.

Visualizing Array Data

The TotalView Visualizer lets you create graphic images of array data. This visualiza-
tion lets you see your data in one glance and can help you quickly find problems
with your data while you are debugging your programs.

FIGURE 177: Laminated Array and Structure

➊ Laminated array
➋ Element [0] for each of the processes
➌ Structure elements for one process

➋

➊

➌

Version 6.2 TotalView Users Guide 335

13
Examining Arrays

Visualizing Array Data
You can execute the Visualizer from within TotalView or you can run it from the com-
mand line to visualize data dumped to a file in a previous TotalView session.

For information about running the TotalView Visualizer, see Chapter 7, “Visualizing
Programs and Data” on page 159.

Visualizing a Laminated Variable Window

You can export data from a laminated Variable Window to the Visualizer by using the
Tools > Visualize command. When visualizing laminated data, the process (or
thread) index is the first axis of the visualization. This means that you must use one
less data dimension than you normally would. If you do not want the pro-
cess/thread axis to be significant, you can use a normal Variable Window since all of
the data must be in one process.
336 TotalView Users Guide Version 6.2

Version 6.2
Chapter 14
Setting Action Points
This chapter explains how to use action points. TotalView supports four kinds of action
points: breakpoints, barrier points, evaluation points, and watchpoints. A breakpoint
stops execution of processes and threads that reach it. A barrier point synchronizes a set
of threads or processes at a location. An evaluation point causes a code fragment to exe-
cute when it is reached. A watchpoint lets you monitor a location in memory and stop
execution when it changes.

Topics in this chapter are:

g “Action Points Overview” on page 337
g “Setting Breakpoints and Barriers” on page 339
g “Defining Evaluation Points and Conditional Breakpoints” on page 354
g “Using Watchpoints” on page 363
g “Saving Action Points to a File” on page 370
g “Evaluating Expressions” on page 371
g “Writing Code Fragments” on page 373

Action Points Overview

Actions points allow you to specify an action that TotalView will perform when a
thread or process reaches a source line or machine instruction in your program.
Here are the different kinds of action points that you can use:

g Breakpoints
When a thread encounters a breakpoint, it stops at the breakpoint. Other
threads in the process will also stop. You can also indicate that you want other
related processes to stop.

Breakpoints are the simplest kind of action point.
TotalView Users Guide 337

14
Setting Action Points

Action Points Overview
g Barrier points
Barrier points are similar to simple breakpoints, differing in that you use them to
synchronize a group of processes or threads. They hold each thread or process
that reaches it until all threads or processes reach it. Barrier points work together
with the TotalView hold and release feature. TotalView supports thread barrier
and process barrier points.

g Evaluation points
An evaluation point is a breakpoint that has a code fragment associated with it.
When a thread or process encounters an evaluation point, it executes this code.
You can use evaluation points in a variety of ways, including conditional break-
points, thread-specific breakpoints, countdown breakpoints, and patching code
fragments into and out of your program.

g Watchpoints
A watchpoint tells TotalView that it should either stop the thread so that you can
interact with your program (unconditional watchpoint) or evaluate an expression
(conditional watchpoint).

All action points share some common properties.

g You can independently enable or disable them. A disabled action isn’t deleted;
however, when your program reaches a disabled action point, TotalView ignores
it.

g You can share action points across multiple processes, or set them in individual
processes.

g Action points apply to the process, so in a multithreaded process, the action
point applies to all of the threads contained in the process.

g TotalView assigns unique ID numbers to each action point. These IDs appear in
several places, including the Root Window, the Action Points Pane of the Process
Window, and the Action Point > Properties Dialog Box.

Each type of action point has a unique symbol. Figure 178 on page 339 shows
some of them.

CLI EQUIVALENT: dactions shows information about action points.
338 TotalView Users Guide Version 6.2

Setting Action Points

Setting Breakpoints and Barriers
The icon lets you know that there are one or more assembler-level action
points associated with the source line.

Setting Breakpoints and Barriers

TotalView has several options for setting breakpoints. You can set:

g Source-level breakpoints

g Breakpoints that are shared among all processes in multiprocess programs

g Assembler-level breakpoints

You can also control whether or not TotalView stops all processes in the control
group when a single member reaches a breakpoint.

Topics in this section are:

g “Setting Source-Level Breakpoints” on page 340

g “Setting and Deleting Breakpoints at Locations” on page 340

g “Displaying and Controlling Action Points” on page 343

FIGURE 178: Action Point Symbols

CLI EQUIVALENT: All action points display as “@” when you use the dlist com-
mand to display your source code. Use the dactions command
to see what kind of action point is set.

➊ Assembler-level action point
➋ Breakpoint
➌ Disabled breakpoint
➍ Barrier breakpoint
➎ Disabled barrier breakpoint
➏ Evaluation point
➐ Disabled evaluation point

➊

➋

➌
➍

➎

➏
➐

Version 6.2 TotalView Users Guide 339

14
Setting Action Points

Setting Breakpoints and Barriers
Setting Source-Level Breakpoints

Typically, you set and clear breakpoints before you start a process. To set a source-
level breakpoint, select a boxed line number in the Process Window. (A boxed line
number indicates that the line is associated with executable code.) A icon
lets you know that a breakpoint is set immediately before the source statement.

You can also set a breakpoint while a process is running by selecting a boxed line
number in the Process Window.

Choosing Source Lines
If you’re using C++ templates, TotalView will set a breakpoint in all instantiations
of that template if Plant in share group is selected. If this isn’t what you want, clear
the button and then select the Addresses button in the Action Point Properties Dia-
log Box. You can now clear locations where the action point shouldn’t be set. (See
the top portion Figure 179 on page 341.)

Similarly, in a multiprocess program, you may not want to set the breakpoint in all
processes. If this is the case, select the Process button. (See the bottom portion on
Figure 179 on page 341.)

Setting and Deleting Breakpoints at Locations

You can set or delete a breakpoint at a specific function or source-line number
without having to first find the function or source line in the Source Pane. All you
need do is enter a line number or function name in the Action Point > At Location
Dialog Box. (See Figure 180 on page 342.)

CLI EQUIVALENT: @ next to the line number

CLI EQUIVALENT: Use dbreak whenever the CLI is displaying a prompt.
340 TotalView Users Guide Version 6.2

Setting Action Points

Setting Breakpoints and Barriers
FIGURE 179: Setting Breakpoints on Multiple Similar Addresses and on Processes
Version 6.2 TotalView Users Guide 341

14
Setting Action Points

Setting Breakpoints and Barriers
When you’re done, TotalView sets a breakpoint at the location. If you enter a func-
tion name, TotalView sets the breakpoint at the function’s first executable line. In
either case, if a breakpoint already exists at a location, TotalView deletes it.

If you enter an ambiguous function name using the Action Point > At Location
command, TotalView displays its Ambiguous Function Dialog Box. See Figure 181.

The procedure for resolving ambiguous function names is similar to the procedure
described in “Choosing Source Lines” on page 340.

FIGURE 180: Action Point > At Location Dialog Box

CLI EQUIVALENT: dbreak sets a breakpoint.

ddelete deletes a breakpoint.

FIGURE 181: Ambiguous Function Dialog Box
342 TotalView Users Guide Version 6.2

Setting Action Points

Setting Breakpoints and Barriers
Displaying and Controlling Action Points

The Action Point > Properties Dialog Box lets you set and control an action point.
(See Figure 182.) Controls in this dialog box also allows you to set an action point’s
type to breakpoint, barrier point, or evaluation point. You can also define what will
happen to other threads and processes when execution reaches this action point.

The following sections explain how you can control action points by using the Pro-
cess Window and the Action Point > Properties Dialog Box.

Disabling
TotalView can retain an action point’s definition and ignore it while your program is
executing. That is, disabling an action point deactivates it without removing it.

FIGURE 182: Action Point > Properties Dialog Box

CLI EQUIVALENT: dset SHARE_ACTION_POINT

dset STOP_ALL

ddisable action-point

CLI EQUIVALENT: ddisable action-point
Version 6.2 TotalView Users Guide 343

14
Setting Action Points

Setting Breakpoints and Barriers
You can disable an action point by:

g Clearing Enable action point in the Properties Dialog Box.

g Selecting the or symbol in the Action Points Pane.

g Using the context (right-click) menu.

g Clicking on a disable command in the menubar.

Deleting
You can permanently remove an action point by selecting the or sym-
bol or selecting the Delete button in the Action Point > Properties Dialog Box.

To delete all breakpoints and barrier points, use the Action Point > Delete All
command.

Enabling
You can activate an action point that was previously disabled by selecting a
dimmed , , or symbol in the Source or Action Points Pane, or by
selecting Enable action point in the Properties Dialog Box.

Suppressing
You can tell TotalView to ignore action points by using the Action Point > Suppress
All command.

When you suppress action points, you disable them. If you have suppressed action
points, you cannot update existing action points or create new ones.

You can make previously suppressed action points active and allow the creation of
new ones by reusing the Action Point > Suppress All command.

CLI EQUIVALENT: ddelete

CLI EQUIVALENT: denable

CLI EQUIVALENT: ddisable –a

CLI EQUIVALENT: denable –a
344 TotalView Users Guide Version 6.2

Setting Action Points

Setting Breakpoints and Barriers
Setting Machine-Level Breakpoints

To set a machine-level breakpoint, you must first display assembler code. (Refer to
“Viewing the Assembler Version of Your Code” on page 216 for information.) You can now
select an instruction’s line number. The line number must be replaced with a dotted
box ()—this indicates the line is the beginning of a machine instruction. Since in-
struction sets on some platforms support variable-length instructions, you might
see more than one line associated with a single line contained in the dotted box.
The icon appears, indicating that the breakpoint occurs before the instruc-
tion executes.

If you set a breakpoint on the first instruction after a source statement, however,
TotalView assumes that you are creating a source-level breakpoint, not an assem-
bler-level one.

If you set machine-level breakpoints on one or more instructions generated from a
single source line and then display source code in the Source Pane, TotalView dis-
plays an icon (see Figure 178 on page 339) on the line number. To see the
actual breakpoint, you must redisplay assembler instructions.

When a process reaches a breakpoint, TotalView:

g Suspends the process.

g Displays the PC arrow icon () over the stop sign to indicate that the PC is at
the breakpoint. (See Figure 184 on page 346.)

g Displays At Breakpoint in the Process Window title bar and other windows.

g Updates the Stack Trace and Stack Frame Panes and all Variable Windows.

FIGURE 183: Breakpoint at Assembler Instruction
Version 6.2 TotalView Users Guide 345

14
Setting Action Points

Setting Breakpoints and Barriers
Setting Breakpoints for Multiple Processes

In all programs including multiprocess programs, you can set breakpoints in parent
and child processes before you start the program and while the program is execut-
ing. Do this using the Action Point > Properties Dialog Box. (See Figure 185.)

This dialog box provides the following controls for setting breakpoints:

FIGURE 184: PC Arrow Over a Stop Icon

FIGURE 185: Action Point > Properties Dialog Box
346 TotalView Users Guide Version 6.2

Setting Action Points

Setting Breakpoints and Barriers
g When Hit, Stop
When your thread hits a breakpoint, TotalView can also stop the thread’s control
group or the process in which it is running.

g Plant in share group
If this is selected, TotalView enables the breakpoint in all members of this
thread’s share group at the same time. If this isn’t selected, you must individually
enable and disable breakpoints in each member of the share group.

The Process button lets you indicate which process in a multiprocess program will
have enabled breakpoints. Note that if Plant in share group is selected, this button
won’t be enabled because you’ve told TotalView to set the breakpoint in all of the
processes.

You can preset many of the properties in this dialog box by using TotalView prefer-
ences, as shown in Figure 186 on page 348.

You can find additional information about this dialog box within the online Help.

If you select the Evaluate button in the Action Point > Properties Dialog Box, you
can add an expression to the action point. This expression will be attached to con-
trol and share group members. Refer to “Writing Code Fragments” on page 373 for
more information.

If you’re trying to synchronize your program’s threads, you will want to set a barrier
point. For more information, see “Barrier Points” on page 350.

Setting Breakpoints When Using fork()/execve()

You must link with the dbfork library before debugging programs that call fork() and
execve(). See “Compiling Programs” on page 40.

CLI EQUIVALENT: dset STOP_ALL

dbreak –p | –g | –t

CLI EQUIVALENT: dset SHARE_ACTION_POINT
Version 6.2 TotalView Users Guide 347

14
Setting Action Points

Setting Breakpoints and Barriers
Processes That Call fork()
By default, TotalView places breakpoints in all processes in a share group. (For in-
formation on share groups, see “Organizing Chaos” on page 25.) When any process in
the share group reaches a breakpoint, TotalView stops all processes in the control
group. This means that TotalView stops the control group containing the share
group. This control can, of course, contain more than one share group. To override
these defaults:

1 Dive into the line number to display the Action Point > Properties Dialog Box.

2 Clear the Plant in share group check box and make sure that the Group radio
button is selected.

Processes That Call execve()
Shared breakpoints are not set in children having different executables. To set the
breakpoints for children that call execve():

FIGURE 186: File > Preferences: Action Points Page

CLI EQUIVALENT: dset SHARE_ACTION_POINT false
348 TotalView Users Guide Version 6.2

Setting Action Points

Setting Breakpoints and Barriers
1 Set the breakpoints and breakpoint options in the parent and the children
that do not call execve().

2 Start the multiprocess program by displaying the Group > Go command.
When the first child calls execve(), TotalView displays the following message:

Process name has exec’d name.
Do you want to stop it now?

3 Answer Yes. TotalView opens a Process Window for the process. (If you
answer No, you won’t have an opportunity to set breakpoints.)

4 Set breakpoints for the process. After you set breakpoints for the first child
using this executable, TotalView won’t prompt when other children call
execve(). This means that if you do not want to share breakpoints in children
using the same executable, dive into the breakpoints and set the breakpoint
options.

5 Select the Group > Go command.

Example: Multiprocess Breakpoint
The following program excerpt illustrates the places where you can set breakpoints
in a multiprocess program:

1 pid = fork();
2 if (pid == –1)
3 error ("fork failed");
4 else if (pid == 0)
5 children_play();
6 else
7 parents_work();

Here’s what happens when you set a breakpoint at different places:

CLI EQUIVALENT: G

Line Number Result
1 Stops the parent process before it forks.
2 Stops both the parent and child processes.
3 Stops the parent process if fork() failed.
5 Stops the child process.
7 Stops the parent process.
Version 6.2 TotalView Users Guide 349

14
Setting Action Points

Setting Breakpoints and Barriers
Barrier Points

A barrier breakpoint is similar to a simple breakpoint, differing in that it holds pro-
cesses and threads that reach the barrier point. Other processes and threads con-
tinue to run. TotalView holds these processes or threads until all processes or
threads defined in the barrier point reach this same place. When the last one
reaches a barrier point, TotalView releases all the held processes or threads.

Topics in this section are:

g “Barrier Breakpoint States” on page 350

g “Setting a Barrier Breakpoint” on page 351

g “Creating a Satisfaction Set” on page 353

g “Hitting a Barrier Point” on page 353

g “Releasing Processes from Barrier Points” on page 353

g “Deleting a Barrier Point” on page 353

g “Changes When Setting and Disabling a Barrier Point” on page 354

Barrier Breakpoint States
Processes and threads at a barrier point are held or stopped, as follows:

Held A held process or thread cannot execute until all the pro-
cesses or threads in its group are at the barrier, or until you
manually release it. The various go and step commands from
the Group, Process, and Thread menus will not start held
processes.

Stopped When all processes in the group reach a barrier point,
TotalView automatically releases them. They remain stopped
at the barrier point until you tell them to resume executing.

CLI EQUIVALENT: dbarrier
350 TotalView Users Guide Version 6.2

Setting Action Points

Setting Breakpoints and Barriers
You can manually release held processes and threads with the Hold and Release
commands contained in the Group, Process, and Thread menus. When you manu-
ally release a process, the go and step commands become available again.

You can reuse the Hold command to again toggle the hold state of the process or
thread. See “Holding and Releasing Processes and Threads” on page 221 for more
information.

When a process or a thread is held, TotalView displays an H (for a held process) or
an h (for a held thread) in the process’s or thread’s entry in the Root Window.

Setting a Barrier Breakpoint
You can set a barrier breakpoint by using the Action Point > Set Barrier command
or from the Action Point > Properties Dialog Box. (See Figure 187.) As an alterna-
tive, you can right-click on the line. From the displayed context menu, you can se-
lect the Set Barrier command.

CLI EQUIVALENT: dfocus ... dhold

dfocus ... dunhold

FIGURE 187: Action Point > Properties Dialog Box
Version 6.2 TotalView Users Guide 351

14
Setting Action Points

Setting Breakpoints and Barriers
Barrier points are most often used to synchronize a set of threads. When a thread
reaches a barrier, it stops, just as it does for a breakpoint. The difference is that
TotalView prevents—that is, holds—each thread reaching the barrier from respond-
ing to resume commands (for example, step, next, or go) until all threads in the af-
fected set arrive at the barrier. When all threads reach the barrier, TotalView
considers the barrier to be satisfied and releases all of the threads being held there.
They are just released; they are not continued. That is, they are left stopped at the barrier.
If you now continue the process, those threads will also run.

If a process is stopped and then continued, the held threads, including the ones
waiting at an unsatisfied barrier, do not run. Only unheld threads run.

The When Hit, Stop radio buttons indicate what other threads TotalView will stop
when execution reaches the breakpoint, as follows:

After all processes or threads reach the barrier, TotalView releases all held threads.
Released means that these threads and processes can now run.

The When Done, Stop radio buttons tell TotalView what else it should stop, as
follows:

Scope TotalView will:
Group Stop all threads in the current thread’s control group.
Process Stop all threads in the current thread’s process.
Thread Only stop this thread.

CLI EQUIVALENT: dbarrier –stop_when_hit

Scope TotalView will:
Group Stop all threads in the current thread’s control group.
Process Stop all threads in the current thread’s process.
Thread Only stop this thread.

CLI EQUIVALENT: dbarrier –stop_when_done
352 TotalView Users Guide Version 6.2

Setting Action Points

Setting Breakpoints and Barriers
Creating a Satisfaction Set
For even more control over what TotalView will stop, you can select a satisfaction set.
This set tells TotalView which threads must be held before it can release the group
of threads. That is, the barrier is satisfied when TotalView has held all of the indicated
threads. Use the Satisfaction group items to tell TotalView that the satisfaction set
consists of all threads in the current thread’s Control, Workers, or Lockstep group.

When you set a barrier point, TotalView places it in every process in the share
group.

Hitting a Barrier Point
If you run one of the processes or threads in a group and it hits a barrier point, you
will see an H next to the process or thread name in the Root Window and the word
[Held] in the title bar in the main Process Window. Barrier points are always shared.

If you create a barrier and all the process’s threads are already at that location,
TotalView won’t hold any of them. However, if you create a barrier and all of the
processes and threads are not at that location, TotalView will hold any thread that
is already there.

Releasing Processes from Barrier Points
TotalView automatically releases processes and threads from a barrier point when
they hit that barrier point and all other processes or threads in the group are al-
ready held at it.

Deleting a Barrier Point
You can delete a barrier point in two ways:

g Using the Action Point > Properties Dialog Box.

g Clicking on the icon in the line number area.

CLI EQUIVALENT: dstatus

CLI EQUIVALENT: ddelete
Version 6.2 TotalView Users Guide 353

14
Setting Action Points

Defining Evaluation Points and Conditional Breakpoints
Changes When Setting and Disabling a Barrier Point
Setting a barrier point at the current PC for a stopped process or thread holds the
process there. If, however, all other processes or threads affected by the barrier
point are at the same PC, TotalView doesn’t hold them. Instead, TotalView treats
the barrier point as if it was an ordinary breakpoint.

TotalView releases all processes and threads that are held and which have threads
at the barrier point when you disable the barrier point. You can disable the barrier
point in the Action Point > Properties Dialog Box by clicking on Enable action
point at the bottom of the dialog box.

Defining Evaluation Points and Conditional Breakpoints

TotalView lets you define evaluation points. These are action points at which you have
added a code fragment that TotalView will execute. You can write the code fragment
in C, Fortran, or assembler.

NOTE Assembler support is currently available on the HP Alpha Tru64 UNIX, IBM AIX, and
SGI IRIX operating systems. While any user can enable or disable TotalView’s ability to compile
evaluation points, they must be enabled if you are entering assembler code.

Topics in this section are:

g “Setting Evaluation Points” on page 356

g “Creating Conditional Breakpoint Examples” on page 356

g “Patching Programs” on page 357

g “Interpreted vs. Compiled Expressions” on page 358

g “Allocating Patch Space for Compiled Expressions” on page 360

By using evaluation points, you can:

g Include instructions that stop a process and its relatives. If the code fragment
can make a decision whether it should stop execution, it is called a conditional
breakpoint.

g Test potential fixes for your program.

g Set the values of your program’s variables.

CLI EQUIVALENT: ddisable
354 TotalView Users Guide Version 6.2

Setting Action Points

Defining Evaluation Points and Conditional Breakpoints
g Automatically send data to the Visualizer. This can produce animated displays of
the changes in your program’s data.

You can set an evaluation point at any source line that generates executable code
(marked with a boxed line number surrounding a line number) or a line containing
assembler-level instructions. This means that if you can set a breakpoint, you can
set an evaluation point.

At each evaluation point, TotalView or your program executes the code contained
in the evaluation point before your program executes the code on that line. While
your program can then go on to execute this source line or instruction, it can:

g Include a branching instruction (such as goto in C or Fortran). The instruction
can transfer control to a different point in the target program, enabling you to
test program patches.

g Execute a TotalView function. TotalView’s functions let you stop execution, cre-
ate barriers, and count down breakpoints. For more information on these state-
ments, refer to Table 20 “Built-In Statements Used in Expressions” on page 375.

TotalView evaluates code fragments in the context of the target program. This
means that you can refer to program variables and branch to places in your
program.

For complete information on what you can include in code fragments, refer to “Writ-
ing Code Fragments” on page 373.

Evaluation points only modify the processes being debugged—they do not modify
your source program or create a permanent patch in the executable. If you save a
program’s evaluation points, however, TotalView reapplies them whenever you start
a debugging session for that program. To save your evaluation points, refer to “Sav-
ing Action Points to a File” on page 370.

NOTE You should stop a process before setting an evaluation point in it. This ensures that
the evaluation point is set in a stable context.
Version 6.2 TotalView Users Guide 355

14
Setting Action Points

Defining Evaluation Points and Conditional Breakpoints
Setting Evaluation Points

To set an evaluation point:

1 Display the Action Point > Properties Dialog Box. You can do this, for exam-
ple, by right-clicking on a icon and selecting Properties or by selecting
a line and then invoking the command from the menu bar.

2 Select the Evaluate button.

3 Select the button (if it isn’t already selected) for the language in which you
will code the fragment.

4 Type the code fragment. For information on supported C, Fortran, and
assembler language constructs, refer to “Writing Code Fragments” on page 373.

5 For multiprocess programs, decide whether to share the evaluation point
among all processes in the program’s share group. By default, TotalView
selects the Plant in share group check box for multiprocess programs, but
you can override this by clearing it.

6 Select the OK button to confirm your changes. If the code fragment has an
error, TotalView displays an error message. Otherwise, it processes the code,
closes the dialog box, and places an icon.

Creating Conditional Breakpoint Examples

Here are some examples:

g To define a breakpoint that is reached whenever the counter variable is greater
than 20 but less than 25:
if (counter > 20 && counter < 25)
$stop;

g To define a breakpoint that will stop execution every tenth time that TotalView
executes the $count function
$count 10

g To define a breakpoint with a more complex expression, consider:
$count my_var * 2

CLI EQUIVALENT: dbreak –e

dbarrier –e
356 TotalView Users Guide Version 6.2

Setting Action Points

Defining Evaluation Points and Conditional Breakpoints
When the my_var variable equals 4, the process stops the eight time it executes
the $count function. After the process stops, TotalView reevaluates the expres-
sion. If my_var now equals 5, the process will stop again after the process exe-
cutes the $count function ten more times.

For complete descriptions of the $stop and $count statements, refer to “Built-In
Statements” on page 375.

Patching Programs

You can use expressions in evaluation points to patch your code if you use the
goto (C) and GOTO (Fortran) statements to jump to a different program location.
This lets you:

g Branch around code that you don’t want your program to execute.

g Add new pieces of code.

In many cases, correcting an error means that you will do both operations: you
patch out incorrect lines and patch in corrections.

Conditionally Patching Out Code
The following example contains a logic error where the program dereferences a null
pointer:

1 int check_for_error (int *error_ptr)
2 {
3 *error_ptr = global_error;
4 global_error = 0;
5 return (global_error != 0);
6 }

The error occurs because the routine calling this function assumes that the value of
error_ptr can be 0. The check_for_error() function, however, assumes that
error_ptr isn’t null, which means that line 3 can dereference a null pointer.

You can correct this error by setting an evaluation point on line 3 and entering:

if (error_ptr == 0) goto 4;

If the value of error_ptr is null, line 3 isn’t executed. Notice that you are not naming
a label used in your program. Instead, you are naming one of the TotalView-gener-
ated line numbers.
Version 6.2 TotalView Users Guide 357

14
Setting Action Points

Defining Evaluation Points and Conditional Breakpoints
Patching in a Function Call
Instead of routing around the problem, you could patch in a printf() statement that
displays the value of the global_error variable created in the preceding program.
You would set an evaluation point on line 4 and enter:

printf ("global_error is %d\n", global_error);

TotalView executes this code fragment before the code on line 4; that is, it is exe-
cuted before global_error is set to 0.

Correcting Code
The next example contains a coding error: the function returns the maximum value
instead of the minimum value:

1 int minimum (int a, int b)
2 {
3 int result;/* Return the minimum */
4 if (a < b)
5 result = b;
6 else
7 result = a;
8 return (result);
9 }

In his example, you would correct this error by adding the following code to an
evaluation point at line 4:

if (a < b) goto 7; else goto 5;

This effectively replaces the if statement on line 4 with the code in the evaluation
point.

Interpreted vs. Compiled Expressions

On most platforms, TotalView executes interpreted expressions. TotalView can also
execute compiled expressions on the HP Alpha Tru64 UNIX, IBM AIX, and SGI IRIX
platforms. On HP Alpha Tru64 UNIX and IBM AIX platforms, compiled expressions
are enabled by default.

You can use the TV::compile_expressions CLI variable to enable or disable com-
piled expressions. See “Operating Systems” in the TOTALVIEW REFERENCE GUIDE to find
out how TotalView handles expressions on specific platforms.
358 TotalView Users Guide Version 6.2

Setting Action Points

Defining Evaluation Points and Conditional Breakpoints
NOTE Using any of the following functions forces TotalView to interpret the evaluation
point instead of compiling it: $clid, $duid, $nid, $processduid, $systid, $tid, and $visualize. In
addition, $pid forces interpretation on AIX.

Interpreted Expressions
Interpreted expressions are interpreted by TotalView. As is always the case, inter-
preted expressions run slower (and possibly much slower) than compiled expres-
sions. With multiprocess programs, interpreted expressions run even more slowly
because processes may need to wait for TotalView to execute the expression.

When you’re debugging remote programs, interpreted expressions always run
slower because the TotalView process on the host, not the TotalView debugger
server (tvdsvr) on the client, interprets the expression. For example, an interpreted
expression could require that 100 remote processes wait for the TotalView debug-
ger process on the host machine to evaluate one interpreted expression. In con-
trast, if TotalView compiles the expression, it evaluates them on each remote
process.

NOTE Whenever a thread hits an interpreted patch point, TotalView stops execution. This
means that TotalView will create a new set of lockstep groups. Consequently, if goal threads
contain interpreted patches, the results are unpredictable.

Compiled Expressions
TotalView compiles, links, and patches expressions into the target process. Be-
cause the target thread executes this code, evaluation points and conditional
breakpoints execute very quickly. (Note that conditional watchpoints are always in-
terpreted.) And, more importantly, this code doesn’t need to communicate with the
TotalView host process until it needs to.

If the expression executes a $stop function, TotalView stops executing the com-
piled expression. At this time, you can single-step through it and continue execut-
ing the expression as you would the rest of your code. See Figure 188 on
page 360.

If you will be using many compiled expressions or your expressions are long, you
may need to think about allocating patch space. For more information, see “Allocat-
ing Patch Space for Compiled Expressions” on page 360.
Version 6.2 TotalView Users Guide 359

14
Setting Action Points

Defining Evaluation Points and Conditional Breakpoints
Allocating Patch Space for Compiled Expressions

TotalView must either allocate or find space in your program to hold the code it
generates for compiled expressions. Since this patch space is part of your pro-
gram’s address space, the location, size, and allocation scheme that TotalView uses
may conflict with your program. As a result, you may need to change how TotalView
allocates this space.

You can choose one of the following patch space allocation schemes:

g Dynamic patch space allocation: Tells TotalView to dynamically find the space
for your expression’s code.

g Static patch space allocation: Tells TotalView to use a statically allocated area
of memory.

Dynamic Patch Space Allocation
Dynamic patch space allocation means that TotalView dynamically allocates patch
space for code fragments. If you do not specify the size and location for this space,
TotalView allocates 1 MB. TotalView creates this space using system calls.

FIGURE 188: Stopped Execution of Compiled Expressions
360 TotalView Users Guide Version 6.2

Setting Action Points

Defining Evaluation Points and Conditional Breakpoints
TotalView allocates memory for read, write, and execute access in the following ad-
dresses:

NOTE You can only allocate dynamic patch space for these machines.

If the default address range conflicts with your program, or you would like to
change the size of the dynamically allocated patch space, you can change:

g Patch space base address by using the –patch_area_base command-line option.

g Patch space length by using the –patch_area_length command-line option.

Static Patch Space Allocation
TotalView can statically allocate patch space if you add a specially named array to
your program. When TotalView needs to use patch space, it uses this space created
for this array.

You can include, for example, a 1 MB statically allocated patch space in your pro-
gram by adding the TVDB_patch_base_address data object in a C module. Because
this object must be 8-byte aligned, declare it as an array of doubles. For example:

/* 1 megabyte == size TV expects */
#define PATCH_LEN 0x100000
double TVDB_patch_base_address [PATCH_LEN /
sizeof(double)]

Table 17: Dynamic Patch Space Allocation Default Addresses

Platform Address range
HP Alpha Tru64 UNIX 0xFFFFF00000 – 0xFFFFFFFFFF

IBM AIX 0xCFF00000 – 0xCFFFFFFF
SGI IRIX (–n32) 0x4FF00000 – 0x4FFFFFFF
SGI IRIX (–64) 0x8FF00000 – 0x8FFFFFFF
Version 6.2 TotalView Users Guide 361

14
Setting Action Points

Defining Evaluation Points and Conditional Breakpoints
If you need to use a static patch space size that differs from the 1 MB default, you
must use assembler language. Table 18 shows sample assembler code for three
platforms that support compiled patch points.

Here is how you would use the static patch space assembler code:

1 Use an ASCII editor and place the assembler code into a file named
tvdb_patch_space.s.

2 Replace the PATCH_SIZE tag with the decimal number of bytes you want. This
value must be a multiple of 8.

3 Assemble the file into an object file by using a command such as:

cc –c tvdb_patch_space.s

On SGI IRIX, use –n32 or –64 to create the correct object file type.

4 Link the resulting tvdb_patch_space.o into your program.

Table 18: Static Patch Space Assembler Code

Platform Assembler Code
HP Alpha Tru64 UNIX .data

.align 3

.globl TVDB_patch_base_address

.globl TVDB_patch_end_address
TVDB_patch_base_address:

.byte 0x00 : PATCH_SIZE
TVDB_patch_end_address:

IBM AIX .csect .data{RW}, 3
.globl TVDB_patch_base_address
.globl TVDB_patch_end_address

TVDB_patch_base_address:
.space PATCH_SIZE

TVDB_patch_end_address:

SGI IRIX .data
.align 3
.globl TVDB_patch_base_address
.globl TVDB_patch_end_address

TVDB_patch_base_address:
.space PATCH_SIZE

TVDB_patch_end_address:
362 TotalView Users Guide Version 6.2

Setting Action Points

Using Watchpoints
Using Watchpoints

TotalView lets you monitor the changes that occur to memory locations by creating
a special kind of action point called a watchpoint. Watchpoints are most often used
to find a statement in your program that is writing to places where it shouldn’t be
writing. This can occur, for example, when processes share memory and more than
one process writes to the same location. It can also occur when your program
writes off the end of an array or when your program has a dangling pointer.

Topics in this section are:

g “Architectures” on page 363

g “Creating Watchpoints” on page 365

g “Watching Memory” on page 366

g “Triggering Watchpoints” on page 367

g “Using Conditional Watchpoints” on page 368
TotalView watchpoints are called modify watchpoints because TotalView only triggers a
watchpoint when your program modifies a memory location. If a program writes a
value into a location that is the same as what is already stored, TotalView doesn’t
trigger the watchpoint because the location’s value did not change.

For example, if location 0x10000 has a value of 0 and your program writes a 0 into
this location, TotalView doesn’t trigger the watchpoint even though your program
wrote data into the memory location. See “Triggering Watchpoints” on page 367 for
more details on when watchpoints trigger.

You can also create conditional watchpoints. A conditional watchpoint is similar to a
conditional breakpoint in that TotalView will evaluate the expression when the
watchpoint triggers. You can use conditional watchpoints for a number of purposes.
For example, you can use one to test if a value changes its sign—that is, it becomes
positive or negative—or if a value moves above or below some threshold value.

Architectures

The number of watchpoints, their size, and alignment restrictions differ from plat-
form to platform. This is because TotalView relies on the operating system and its
hardware to implement watchpoints.
Version 6.2 TotalView Users Guide 363

14
Setting Action Points

Using Watchpoints
NOTE Watchpoints are not available on Alpha Linux and HP.

The following list describes constraints that exist on each platform:

HP Alpha Tru64 Tru64 places no limitations on the number of watchpoints that
you can create, and there are no alignment or size constraints.
However, watchpoints can’t overlap, and you can’t create a
watchpoint on an already write-protected page.

Watchpoints use a page protection scheme. Because the page
size is 8,192 bytes, watchpoints can degrade performance if
your program frequently writes to pages containing watch-
points.

IBM AIX You can create one watchpoint on AIX 4.3.3.0-2 (AIX 4.3R) or
later systems running 64-bit chips. These are Power3 and
Power4 systems. (AIX 4.3R is available as APAR IY06844.) A
watchpoint cannot be longer than 8 bytes, and you must align
it within an 8-byte boundary.

IRIX6 MIPS Watchpoints are implemented on IRIX 6.2 and later operating
systems. These systems allow you to create about 100 watch-
points. There are no alignment or size constraints. However,
watchpoints can’t overlap.

Linux x86 You can create up to four watchpoints and each must be 1, 2,
or 4 bytes in length, and a memory address must be aligned
for the byte length. That is, you must align a 4-byte watch-
point on a 4-byte address boundary, and a 2-byte watchpoint
must be aligned on a 2-byte boundary, and so on.

Solaris SPARC TotalView supports watchpoints on Solaris 2.6 or later operat-
ing systems. These operating system allow you to create hun-
dreds of watchpoints, and there are no alignment or size
constraints. However, watchpoints can’t overlap.

Typically, a debugging session doesn’t use many watchpoints. In most cases, you
are only monitoring one memory location at a time. So, restrictions on the number
of values you can watch are seldom an issue.
364 TotalView Users Guide Version 6.2

Setting Action Points

Using Watchpoints
Creating Watchpoints

Watchpoints are created by using the Tools > Watchpoint Dialog Box, which is only
invocable from a Variable Window (If your platform doesn’t support watchpoints,
this menu item is dimmed.) See Figure 189.

Controls within this dialog box let you create unconditional and conditional watch-
points. You will be setting a watchpoint for all of the information displayed in the
Variable Window, not just for an element of it. If, for example, the Variable Window is
displaying an array, you will be setting a watchpoint for the entire array (or as much
of it as TotalView can watch.) If you only want to watch one element, dive on the el-
ement and then set the watchpoint. Similarly, if the Variable Window is displaying a
structure and you only want to watch one element, dive on the element before set-
ting the watchpoint.

The online Help contains information on the fields in this dialog box.

FIGURE 189: Tools > Watchpoint Dialog Boxes
Version 6.2 TotalView Users Guide 365

14
Setting Action Points

Using Watchpoints
Displaying Watchpoints
The watchpoint entry, indicated by UDWP (Unconditional Data Watchpoint) and
CDWP (Conditional Data Watchpoint), displays the action point ID, the amount of
memory being watched, and the location being watched.

If you dive into a watchpoint, TotalView displays the Watchpoint Properties Dialog
Box.

If you select a watchpoint, TotalView will toggle the enabled/disabled state of the
watchpoint.

Watching Memory

A watchpoint tracks a memory location—it does not track a variable. This means
that a watchpoint might not perform as you would expect it to when watching stack
or automatic variables. For example, assume that you want to watch a variable in a
subroutine. When control exits from the subroutine, the memory allocated on the
stack for this subroutine is deallocated. At this time, TotalView is watching unallo-
cated stack memory. When the stack memory is reallocated to a new stack frame,
TotalView is still watching this same position. This means that TotalView triggers the
watchpoint when something changes this newly allocated memory.

Also, if your program reinvokes a subroutine, it usually executes in a different stack
location. So, TotalView will not be able to monitor changes to the variable because
it is at a different memory location.

All of this means that in most circumstances, you can’t place a watchpoint on a
stack variable. If you need to watch a stack variable, you will need to create and de-
lete the watchpoint each time your program invokes the subroutine.

NOTE In some circumstances, a subroutine will always be called from the same location.
This means that its local variables will probably be in the same location, so trying can’t hurt.

This doesn’t mean you can’t place a watchpoint on a stack or heap variable. It just
means that what happens is undefined after this memory is released. For example,
after you enter a routine, you can be assured that memory locations are always
tracked accurately until the memory is released.
366 TotalView Users Guide Version 6.2

Setting Action Points

Using Watchpoints
If you place a watchpoint on a global or static variable that is always accessed by
reference (that is, the value of a variable is always accessed using a pointer to the
variable), you can set a watchpoint on it because the memory locations used by the
variable are not changing.

Triggering Watchpoints

When a watchpoint triggers, the thread’s program counter (PC) points to the in-
struction following the instruction that caused the watchpoint to trigger. If the mem-
ory store instruction is the last instruction in a source statement, the PC will be
pointing to the source line following the statement that triggered the watchpoint.
(Breakpoints and watchpoints work differently. A breakpoint stops before an instruc-
tion executes. In contrast, a watchpoint stops after an instruction executes.)

Using Multiple Watchpoints
If a program modifies more than one byte with one program instruction or state-
ment (which is normally the case when storing a word), TotalView triggers the
watchpoint with the lowest memory location in the modified region. Although the
program may be modifying locations monitored by other watchpoints, only the
watchpoint for the lowest memory location is triggered. This can occur when your
watchpoints are monitoring adjacent memory locations and a single store instruc-
tion modifies these locations.

For example, assume that you have two 1-byte watchpoints, one on location
0x10000 and the other on location 0x10001. Also assume that your program uses a
single instruction to store a 2-byte value at locations 0x10000 and 0x10001. If the
2-byte storage operation modifies both bytes, the watchpoint for location 0x10000
triggers. The watchpoint for location 0x10001 does not and will not trigger at this
time.

Here’s a second example. Assume that you have a 4-byte integer that uses storage
locations 0x10000 through 0x10003 and you set a watchpoint on this integer. If a
process modifies location 0x10002, TotalView triggers the watchpoint. Now assume
that you’re watching two adjacent 4-byte integers that are stored in locations
0x10000 through 0x10007. If a process writes to locations 0x10003 and 0x10004
Version 6.2 TotalView Users Guide 367

14
Setting Action Points

Using Watchpoints
(that is, one byte in each), TotalView triggers the watchpoint associated with loca-
tion 0x10003. The watchpoint associated with location 0x10004 does not trigger.

Data Copies
TotalView keeps an internal copy of data in the watched memory locations for each
process sharing the watchpoint. If you create watchpoints that cover a large area of
memory or if your program has a large number or processes, you will increase
TotalView’s virtual memory requirements. Furthermore, TotalView refetches data for
each memory location whenever it continues the process or thread. This can affect
TotalView’s performance.

Using Conditional Watchpoints

If you associate an expression with a watchpoint (by selecting the CDWP icon in the
Tools > Watchpoint Dialog Box and entering an expression), TotalView will evalu-
ate the expression after the watchpoint triggers. The programming statements that
you can use are identical to those used when creating an evaluation point, except
that you can’t call functions from a watchpoint expression.

The variables used in watchpoint expressions must be global. This is because the
watchpoint can be triggered from any procedure or scope in your program.

Because memory locations are not scoped, the variable used in your expression
must be globally accessible.

NOTE Fortran does not have global variables. Consequently, you can’t directly refer to your
program’s variables.

TotalView has two function variables that are specifically designed to be used with
conditional watchpoint expressions:

$oldval The value of the memory locations before a change is made.

$newval The value of the memory locations after a change is made.

Here is an expression that uses these values:

if (iValue != 42 && iValue != 44) {
iNewValue = $newval; iOldValue = $oldval; $stop;}
368 TotalView Users Guide Version 6.2

Setting Action Points

Using Watchpoints
When the value of the iValue global variable is neither 42 nor 44, TotalView will
store the new and old memory values in the iNewValue and iOldValue variables.
These variables are defined in the program. (Storing the old and new values is a
convenient way of letting you monitor the changes made by your program.)

Here is a condition that triggers a watchpoint when a memory location’s value be-
comes negative:

if ($oldval >= 0 && $newval < 0) $stop

And here’s a condition that triggers a watchpoint when the sign of the value in the
memory location changes:

if ($newval * $oldval <= 0) $stop

Both of these examples require that you set the Type for $oldval/$newval field in
the Watchpoint Properties Dialog Box.

For more information on writing expressions, see “Writing Code Fragments” on page
373.

If a watchpoint has the same length as the $oldval or $newval data type, the value
of these variables is apparent. However, if the data type is shorter than the length
of the watch region, TotalView searches for the first changed location in the
watched region and uses that location for the $oldval and $newval variables. (It
aligns data within the watched region based on the size of the data’s type. For ex-
ample, if the data type is a 4-byte integer and byte 7 in the watched region
changes, TotalView uses bytes 4 through 7 of the watchpoint when it assigns values
to these variables.)

For example, suppose you’re watching an array of 1000 integers called
must_be_positive and you want to trigger a watchpoint as soon as one element be-
comes negative. You would declare the type for $oldval and $newval to be int and
use the following condition:

if ($newval < 0) $stop;

When your program writes a new value to the array, TotalView triggers the watch-
point, sets the values of $oldval and $newval, and evaluates the expression. When
$newval is negative, the $stop statement halts the process.
Version 6.2 TotalView Users Guide 369

14
Setting Action Points

Saving Action Points to a File
This can be a very powerful technique for range checking all the values your pro-
gram writes into an array. (Because of byte length restrictions, you can only use this
technique on IRIX and Solaris.)

NOTE TotalView always interprets conditional watchpoints; it never compiles them. And, be-
cause interpreted watchpoints are single threaded in TotalView, every process or thread that
writes to the watched location must wait for other instances of the watchpoint to finish exe-
cuting. This can adversely affect performance.

Saving Action Points to a File

You can save a program’s action points into a file. TotalView will then use this infor-
mation to reset these points when you restart the program. When you save action
points, TotalView creates a file named program.TVD.breakpoints, where program is
the name of your program.

NOTE Watchpoints are not saved.

Use the Action Point > Save All command to save your action points to a file.
TotalView places the action points file in the same directory as your program.

If you’re using a preference to automatically save breakpoints, TotalView will auto-
matically save action points to a file. Alternatively, starting TotalView with the –sb
option (see “TotalView Command Syntax” in the TOTALVIEW REFERENCE GUIDE) also tells
TotalView to save your breakpoints.

At any time, you can restore saved action points if you use the Action Points >
Load All command.

Automatic saving and loading is controlled by preferences (see File > Preferences
in the online Help for more information).

CLI EQUIVALENT: dactions –save filename

CLI EQUIVALENT: dactions –load filename

CLI EQUIVALENT: dset TV::auto_save_breakpoints
370 TotalView Users Guide Version 6.2

Setting Action Points

Evaluating Expressions
Evaluating Expressions

TotalView lets you open a window for evaluating expressions in the context of a
particular process and evaluate expressions in C, Fortran, or assembler.

NOTE Not all platforms let you use assembler constructs; see “Architectures” in the
TotalView Reference Guide for details.

You can use the Tools > Evaluate Dialog Box in many different ways, but here are
two examples:

g Expressions can contain loops, so you could use a for loop to search an array of
structures for an element set to a certain value. In this case, you use the loop in-
dex at which the value is found as the last expression in the expression field.

g Because you can call subroutines, you can test and debug a single routine in
your program without building a test program to call it.

To evaluate an expression:

1 Tell TotalView to display the Evaluate Dialog Box by selecting the Tools >
Evaluate command. An Evaluate Dialog Box appears. If your program hasn’t
yet been created, you won’t be able to use any of the program’s variables or
call any of its functions.

2 Select a button for the programming language you’re writing the expression
in (if it isn’t already selected).

3 Move to the Expression field and enter a code fragment. For a description of
the supported language constructs, see “Writing Code Fragments” on page 373.

TotalView returns the value of the last statement in the code fragment. This
means that you don’t have to assign the expression’s return value to a variable.
Figure 190 on page 372 shows a sample expression. The last statement in this
example assigns the value of my_var1-3 back to my_var1. Because this is the
last statement in the code fragment, the value placed in the Result field would be
the same if you had just typed my_var1-3.

4 Select the Evaluate button. If TotalView finds an error, it places the cursor on
the incorrect line and displays an error message. Otherwise, it interprets (or
on some platforms, compiles and executes) the code, and displays the value
of the last expression in the Result field.
Version 6.2 TotalView Users Guide 371

14
Setting Action Points

Evaluating Expressions
While the code is being executed, you can’t modify anything in the dialog box.
TotalView may also display a message box that tells you that it is waiting for the
command to complete. (See Figure 191.)

If you select Cancel, TotalView stops execution.

Since TotalView evaluates code fragments in the context of the target process, it
evaluates stack variables according to the currently selected stack frame. If the
fragment reaches a breakpoint (or stops for any other reason), TotalView stops
evaluating your expression. Assignment statements in an expression can affect the
target process because they can change a variable’s value.

FIGURE 190: Tools > Evaluate Dialog Box

FIGURE 191: Waiting to Complete Message Box
372 TotalView Users Guide Version 6.2

Setting Action Points

Writing Code Fragments
The controls at the top of the dialog box let you refine the scope at which TotalView
evaluates the information you enter. For example, you could evaluate a function in
more than one process. Figure 192 shows TotalView displaying the value of a vari-
able in multiple processes and then sending the value as it exists in each process to
a function that runs on each of these processes.

See Chapter 11, “Using Groups, Processes, and Threads” on page 239 for information on
using the P/T set controls at the top of this window.

Writing Code Fragments

You can use code fragments in evaluation points and in the Tools > Evaluate Dia-
log Box. This section describes the function variables, built-in statements, and lan-
guage constructs supported by TotalView.

FIGURE 192: Evaluating Information in Multiple Processes
Version 6.2 TotalView Users Guide 373

14
Setting Action Points

Writing Code Fragments
NOTE While the CLI does not have an “evaluate” command, the information in the follow-
ing sections does apply to the expression argument of the dbreak, dbarrier, and dwatch
commands.

Topics in this section are:

g “TotalView Variables” on page 374

g “Built-In Statements” on page 375

g “C Constructs Supported” on page 377

g “Fortran Constructs Supported” on page 378

g “Writing Assembler Code” on page 380

TotalView Variables

The TotalView expression system supports built-in variables that allow you to ac-
cess special thread and process values. All variables are 32-bit integers, which is an
int or a long on most platforms. Table 19 lists TotalView’s built-in variables and
their meanings.

TotalView’s built-in variables allow you to create thread-specific breakpoints from
the expression system. For example, the $tid variable and the $stop built-in func-
tion let you create a thread-specific breakpoint as follows:

Table 19: TotalView Built-in Variables

Name Returns
$clid The cluster ID. (Interpreted expressions only.)
$duid The TotalView-assigned Debugger Unique ID (DUID). (Interpreted

expressions only.)
$newval The value just assigned to a watched memory location. (Watchpoints

only.)
$nid The node ID. (Interpreted expressions only.)
$oldval The value that existed in a watched memory location before a new

value modified it. (Watchpoints only.)
$pid The process ID.
$processduid The DUID of the process. (Interpreted expressions only.)
$systid The system-assigned thread ID. When this is referenced from a

process, TotalView throws an error.
$tid The TotalView-assigned thread ID. When this is referenced from a

process, TotalView throws an error.
374 TotalView Users Guide Version 6.2

Setting Action Points

Writing Code Fragments
if ($tid == 3)
$stop;

This tells TotalView to stop the process only when the third thread evaluates the
expression.

You can also create complex expressions by using these variables. For example:

if ($pid != 34 && $tid > 7)
printf (“Hello from %d.%d\n”, $pid, $tid);

NOTE Using any of the following variables means that the evaluation point is interpreted in-
stead of compiled: $clid, $duid, $nid, $processduid, $systid, $tid, and $visualize. In addition,
$pid forces interpretation on AIX.

You can’t assign a value to a built-in variable or obtain its address.

Built-In Statements

TotalView provides a set of built-in statements that you can use when writing code
fragments. The statements are available in all languages, and are shown in the fol-
lowing table.

Table 20: Built-In Statements Used in Expressions

Statement Use
$count expression
$countprocess expression

Sets a process-level countdown breakpoint. When any
thread in a process executes this statement for the number
of times specified by expression, the process stops. The
other processes in the control group continue to execute.

$countall expression Sets a program-group-level countdown breakpoint. All
processes in the control group stop when any process in the
group executes this statement for the number of times
specified by expression.

$countthread expression Sets a thread-level countdown breakpoint. When any thread
in a process executes this statement for the number of times
specified by expression, the thread stops. Other threads in
the process continue to execute.
If the target system cannot stop an individual thread, this
statement performs identically to $countprocess.
Version 6.2 TotalView Users Guide 375

14
Setting Action Points

Writing Code Fragments
A thread evaluates expression when it executes $count for
the first time. This expression must evaluate to a positive
integer. When TotalView first encounters this variable, it
determines a value for expression. TotalView will not
reevaluate until the expression actually stops the thread.
This means that TotalView ignores changes in the value of
expression until it hits the breakpoint. After the breakpoint
occurs, TotalView reevaluates the expression and sets a new
value for this statement.
The internal counter is stored in the process and shared by
all threads in that process.

$hold
$holdprocess

Holds the current process. If all other processes in the group
are already held at this Eval point, then TotalView will
release all of them. If other processes in the group are
running, they continue to run.

$holdstopall
$holdprocessstopall

Exactly like $hold, except any processes in the group which
are running are stopped. Note that the other processes in the
group are not automatically held by this call—they are just
stopped.

$holdthread Freezes the current thread, leaving other threads running.
$holdthreadstop
$holdthreadstopprocess

Exactly like $holdthread except it stops the process. The
other processes in the group are left running.

$holdthreadstopall Exactly like $holdthreadstop except it stops the entire
group.

$stop
$stopprocess

Sets a process-level breakpoint. The process that executes
this statement stops; other processes in the control group
continue to execute.

$stopall Sets a program-group-level breakpoint. All processes in the
control group stop when any thread or process in the group
executes this statement.

$stopthread Sets a thread-level breakpoint. Although the thread that
executes this statement stops, all other threads in the
process continue to execute. If the target system cannot
stop an individual thread, this statement performs identically
to $stopprocess.

Table 20: Built-In Statements Used in Expressions (cont.)

Statement Use
376 TotalView Users Guide Version 6.2

Setting Action Points

Writing Code Fragments
C Constructs Supported

When writing code fragments in C, keep these guidelines in mind:

g You can use C-style (/* comment */) and C++-style (// comment) comments.
For example:
// This code fragment creates a temporary patch
i = i + 2; /* Add two to i */

g You can omit semicolons if the result isn’t ambiguous.

g You can use dollar signs ($) in identifiers.

Data Types and Declarations
The following list describes the C data types and declarations that you can use:

g The data types that you can use are char, short, int, float, double, and pointers
to any primitive type or any named type in the target program.

g Only simple declarations are permitted. Do not use struct, union, and array dec-
larations.

g You can refer to variables of any type in the target program.

g Unmodified variable declarations are considered local. References to these dec-
larations override references to similarly named global variables and other vari-
ables in the target program.

g (Compiled evaluation points only.) The global declaration makes a variable avail-
able to other evaluation points and expression windows in the target process.

g (Compiled evaluation points only.) The extern declaration references a global
variable that was or will be defined elsewhere. If the global variable is not yet de-
fined, TotalView displays a warning.

$visualize(expression[,slice]) Visualizes the data specified by expression and modified by
the optional slice value. Expression and slice must be
expressed using the code fragment’s language. The
expression must return a dataset (after modification by slice)
that can be visualized. slice is a quoted string containing a
slice expression. For more information on using $visualize
in an expression, see “Visualizing Data Programmatically” on
page 169.

Table 20: Built-In Statements Used in Expressions (cont.)

Statement Use
Version 6.2 TotalView Users Guide 377

14
Setting Action Points

Writing Code Fragments
g Static variables are local and persist even after TotalView evaluates an evaluation
point.

g TotalView only evaluates expressions that initialize static and global variables the
first time it evaluates a code fragment. In contrast, it initializes local variables
each time it evaluates a code fragment.

Statements
The following list describes the C language statements that you can use.

g The statements that you can use are assignment, break, continue, if/else struc-
tures, for, goto, and while.

g You can use the goto statement to define and branch to symbolic labels. These
labels are local to the window. You can also refer to a line number in the program.
This line number is the number displayed in the Source Pane. For example, here
is a goto statement that branches to source line number 432 of the target pro-
gram:
goto 432;

g Although function calls are permitted, you can’t pass structures.

g Type casting is permitted.

All operators are permitted, with these limitations:

g TotalView doesn’t support the ?: conditional operator.

g While you can use the sizeof operator, you can’t use it for data types.

g The (type) operator can’t cast data to fixed-dimension arrays by using C cast syn-
tax.

Fortran Constructs Supported

When writing code fragments in Fortran, keep these guidelines in mind:

g Enter only one statement on a line. You can’t continue a statement onto more
than one line.

g You can use GOTO, GO TO, ENDIF, and END IF statements; while ELSEIF isn’t al-
lowed, you can use ELSE IF.

g Syntax is free-form. No column rules apply.

g You can enter comments in three ways: with a C in column 1 or as free-form com-
ments using the /* ... */ delimiters or the // characters. In addition, anything
typed after // characters is also ignored. The following example shows all three:
378 TotalView Users Guide Version 6.2

Setting Action Points

Writing Code Fragments
C I=I+1
/*
I=I+1
J=J+1
ARRAY1(I,J)= I * J
*/
k = 4 // This is also a comment

g The space character is significant and is sometimes required. (Some Fortran 77
compilers ignore all space characters.) For example:

Data Types and Declarations
The following is a list of data types and declarations that you can use in a Fortran
expression.

g You can use the following data types: INTEGER (assumed to be long), REAL,
DOUBLE PRECISION, and COMPLEX.

g You can’t use implied data types.

g You can only use simple declarations. You can’t use a COMMON, BLOCK DATA,
EQUIVALENCE, STRUCTURE, RECORD, UNION, or an array declaration.

g Your can refer to variables of any type in the target program.

Statements
The following list describes the Fortran language statements that you can use.

g You can use the following statements: assignment, CALL (to subroutines, func-
tions, and all intrinsic functions except CHARACTER functions in the target pro-
gram), CONTINUE, DO, GOTO, IF (including block IF, ENDIF, ELSE, and ELSE IF),
and RETURN (but not an alternate return).

g A GOTO statement can refer to a line number in your program. This line number
is the number displayed in the Source Pane. For example, the following GOTO
statement branches to source line number 432:
GOTO $432;

Valid Invalid
DO 100 I=1,10 DO100I=1,10
CALL RINGBELL CALL RING BELL
X .EQ. 1 X.EQ.1
Version 6.2 TotalView Users Guide 379

14
Setting Action Points

Writing Code Fragments
You must use a dollar sign ($) before the line number so that TotalView knows
that you’re referring to TotalView’s source line number rather than a statement
label.

g The only expression operators that are not supported are the CHARACTER oper-
ators and the .EQV., .NEQV., and .XOR. logical operators.

g You can’t use subroutine function and entry definitions.

g You can’t use Fortran 90 array syntax.

g You can’t use Fortran 90 pointer assignment (the => operator).

g You can’t call Fortran 90 functions that require assumed shape array arguments.

Writing Assembler Code

On HP Alpha Tru64 UNIX, RS/6000 IBM AIX, and SGI IRIX operating systems,
TotalView lets you use assembler code in evaluation points, conditional break-
points, and in the Tools > Evaluate Dialog Box. However, if you want to use assem-
bler constructs, you must enable compiled expressions. See “Interpreted vs. Compiled
Expressions” on page 358 for instructions.

To indicate that an expression in the breakpoint or Evaluate Dialog Box is an as-
sembler expression, click on the Assembler button in the Action Point >
Properties Dialog Box, as shown in Figure 193.

Assembler expressions are written in the TotalView Assembler Language. In this lan-
guage, instructions are written in the target machine’s native assembler language.
However, the operators available to construct expressions in instruction operands
and the set of available pseudo-operators are the same on all machines.

The TotalView assembler accepts instructions using the same mnemonics recog-
nized by the native assembler, and it recognizes the same names for registers that
native assemblers recognize.

Some architectures provide extended mnemonics that do not correspond exactly
with machine instructions and which represent important, special cases of instruc-
tions, or provide for assembling short, commonly used sequences of instructions.
The TotalView assembler recognizes these mnemonics if:
380 TotalView Users Guide Version 6.2

Setting Action Points

Writing Code Fragments
g They assemble to exactly one instruction.

g The relationship between the operands of the extended mnemonics and the
fields in the assembled instruction code is a simple one-to-one correspondence.

Assembler language labels are indicated as name: and appear at the beginning of a
line. Labels can appear alone on a line. The symbols you can use include labels
defined in the assembler expression and all program symbols.

The TotalView assembler operators are described in the following table:

FIGURE 193: Using Assembler

TABLE 21: TotalView Assembler Operators

Operators Definition
+ Plus
– Minus (also unary)
* Times
Remainder
/ Quotient
& Bitwise AND
^ Bitwise XOR
! Bitwise OR NOT (also unary –, bitwise NOT)
| Bitwise OR
Version 6.2 TotalView Users Guide 381

14
Setting Action Points

Writing Code Fragments
The TotalView Assembler pseudo-operations are as follows:

(expr) Grouping
<< Left shift
>> Right shift
“text” Text string, 1-4 characters long, is right justified in a 32-bit word
hi16 (expr) Low 16 bits of operand expr
hi32 (expr) High 32 bits of operand expr
lo16 (expr) High 16 bits of operand expr
lo32 (expr) Low 32 bits of operand expr

Table 22: TotalView Assembler Pseudo-Ops

Pseudo Ops Definition
$debug [0 | 1] Internal debugging option.

With no operand, toggle debugging;
0 => turn debugging off
1 => turn debugging on

$hold
$holdprocess

Hold the process

$holdstopall
$holdprocessstopall

Hold the process and stop the control group

$holdthread Hold the thread
$holdthreadstop
$holdthreadstopprocess

Hold the thread and stop process

$holdthreadstopall Hold the thread and stop the control group
$long_branch expr Branch to location expr using a single instruction in an

architecture-independent way; using registers is not required
$stop
$stopprocess

Stop the process

$stopall Stop the control group
$stopthread Stop the thread
name=expr Same as def name,expr
align expr [, expr] Align location counter to an operand 1 alignment; use

operand 2 (or 0) as the fill value for skipped bytes
ascii string Same as string
asciz string Zero-terminated string

TABLE 21: TotalView Assembler Operators (cont.)

Operators Definition
382 TotalView Users Guide Version 6.2

Setting Action Points

Writing Code Fragments
bss name,size-expr[,expr] Define name to represent size-expr bytes of storage in the
bss section with alignment optional expr; the default
alignment depends on the size:
if size-expr >= 8 then 8 else
if size-expr >= 4 then 4 else
if size-expr >= 2 then 2 else 1

byte expr [, expr] ... Place expr values into a series of bytes
comm name,expr Define name to represent expr bytes of storage in the bss

section; name is declared global; alignment is as in bss
without an alignment argument

data Assemble code into data section (data)
def name,expr Define a symbol with expr as its value
double expr [, expr] ... Place expr values into a series of doubles
equiv name,name Make operand 1 be an abbreviation for operand 2
fill expr, expr, expr Fill storage with operand 1 objects of size operand 2, filled

with value operand 3
float expr [, expr] ... Place expr values into a series of floating point numbers
global name Declare name as global
half expr [, expr] ... Place expr values into a series of 16-bit words
lcomm name,expr[,expr] Identical to bss
lsym name,expr Same as def name,expr but allows redefinition of a

previously defined name
org expr [, expr] Set location counter to operand 1 and set operand 2 (or 0) to

fill skipped bytes
quad expr [, expr] ... Place expr values into a series of 64-bit words
string string Place string into storage
text Assemble code into text section (code)
word expr [, expr] ... Place expr values into a series of 32-bit words
zero expr Fill expr bytes with zeros

Table 22: TotalView Assembler Pseudo-Ops (cont.)

Pseudo Ops Definition
Version 6.2 TotalView Users Guide 383

14
Setting Action Points

Writing Code Fragments
384 TotalView Users Guide Version 6.2

Glossary
ACTION POINT: A debugger feature that allows a user to request that program execu-
tion stop under certain conditions. Action points include breakpoints, watchpoints,
evaluation points, and barriers.

ACTION POINT IDENTIFIER: A unique integer ID associated with an action point.

ADDRESS SPACE: A region of memory that contains code and data from a program.
One or more threads can run in an address space. A process normally contains an
address space.

ADDRESSING EXPRESSION: A set of instructions that tell TotalView where it can find
information. These expressions are only used within the type transformation facil-
ity.

AFFECTED P/T SET: The set of process and threads that will be affected by the com-
mand. For most commands, this is identical to the target P/T set, but in some cases
it may include additional threads. (See “P/T (process/thread) set” on page 394 for
more information.)

AGGREGATE DATA: A collection of data elements. For example, a structure or an array
is an aggregate.

AGGREGATED OUTPUT: The CLI compresses output from multiple threads when they
would be identical except for the P/T identifier.

ARENA: A specifier that indicates the processes, threads, and groups upon which a
command executes. Arena specifiers are p (process), t (thread), g (group), d
(default), and a (all).
Version 6.2 TotalView Users Guide 385

Glossary

array slice – call frame
ARRAY SLICE: A subsection of an array, which is expressed in terms of a lower bound,
upper bound, and stride. Displaying a slice of an array can be useful when you are
working with very large arrays.

ASYNCHRONOUS: When processes communicate with one another, they send mes-
sages. If a process decides that it doesn’t want to wait for an answer, it is said to
run “asynchronously.” For example, in most client/server programs, one program
sends an RPC request to a second program and then waits to receive a response
from the second program. This is the normal synchronous mode of operation. If,
however, the first program sends a message and then continues executing, not
waiting for a reply, the first mode of operation is said to be asynchronous.

AUTOLAUNCHING: When a process begins executing on a remote computer, TotalView
can also launch a tvdsvr (TotalView Debugger Sever) process on this computer that
will send debugging information back to the TotalView process that you are inter-
acting with.

AUTOMATIC PROCESS ACQUISITION: TotalView automatically detects the many pro-
cesses that parallel and distributed programs run in, and attaches to them auto-
matically so you don’t have to attach to them manually. This process is called
automatic process acquisition. If the process is on a remote machine, automatic process
acquisition automatically starts the TotalView Debugger Server (the tvdsvr).

BARRIER: An action point specifying that processes reaching a particular location in
the source code should stop and wait for other processes to catch up.

BASE WINDOW: The original Process Window or Variable Window before you dive into
routines or variables. After diving, you can use a Reset or Undive command to
restore this original window.

BLOCKED: A thread state where the thread is no longer executing because it is waiting
for an event to occur. In most cases, the thread is blocked because it is waiting for a
mutex or condition state.

BREAKPOINT: A point in a program where execution can be suspended to permit
examination and manipulation of data.

CALL FRAME: The memory area containing the variables belonging to a function, sub-
routine, or other scope division such as a block.
386 TotalView Users Guide Version 6.2

Glossary

call stack – current frame
CALL STACK: A higher-level view of stack memory, interpreted in terms of source pro-
gram variables and locations. This is where your program places stack frames.

CHILD PROCESS: A process created by another process (see “parent process” on
page 393) when that other process calls fork().

CLOSED LOOP: see closed loop.

CLUSTER DEBUGGING: The action of debugging a program that is running on a cluster
of hosts in a network. Typically, the hosts are homogeneous.

COMMAND HISTORY LIST: A debugger-maintained list storing copies of the most
recent commands issued by the user.

CONDITION SYNCHRONIZATION: A process that delays thread execution until a con-
dition is satisfied.

CONTEXTUALLY QUALIFIED (SYMBOL): A symbol that is described in terms of its
dynamic context, rather than its static scope. This includes process identifier,
thread identifier, frame number, and variable or subprocedure name.

CONTROL GROUP: All the processes that a program creates. These processes can be
local or remote. If your program uses processes that it did not create, TotalView
places them in separate control groups. For example, a client/server program has
two distinct executables that run independently of one another. Each would be in a
separate control group. In contrast, processes created by fork() are in the same
control group.

CORE FILE: A file containing the contents of memory and a list of thread registers. The
operating system dumps (creates) a core file whenever a program exits because of a
severe error (such as an attempt to store into an invalid address).

CORE-FILE DEBUGGING: A debugging session that examines a core file image. Com-
mands that modify program state are not permitted in this mode.

CROSS-DEBUGGING: A special case of remote debugging where the host platform and
the target platform are different types of machines.

CURRENT FRAME: The current portion of stack memory, in the sense that it contains
information about the subprocedure invocation that is currently executing.
Version 6.2 TotalView Users Guide 387

Glossary

current language – distributed debugging
CURRENT LANGUAGE: The source code language used by the file containing the cur-
rent source location.

CURRENT LIST LOCATION: The location governing what source code will be displayed
in response to a list command.

DATA SET: A set of array elements generated by TotalView and sent to the Visualizer.
(See visualizer process.)

DBELOG LIBRARY: A library of routines for creating event points and generating event
logs from within TotalView. To use event points, you must link your program with
both the dbelog and elog libraries.

DBFORK LIBRARY: A library of special versions of the fork() and execve() calls used by
TotalView to debug multiprocess programs. If you link your program with
TotalView’s dbfork library, TotalView will be able to automatically attach to newly
spawned processes.

DEBUGGING INFORMATION: Information relating an executable to the source code
from which it was generated.

DEBUGGER INITIALIZATION FILE: An optional file establishing initial settings for
debugger state variables, user-defined commands, and any commands that should
be executed whenever TotalView or the CLI is invoked. Must be called .tvdrc.

DEBUGGER PROMPT: A string printed by the CLI that indicates that it is ready to
receive another user command.

DEBUGGER SERVER: See tvdsvr process.

DEBUGGER STATE: Information that TotalView or the CLI maintains in order to inter-
pret and respond to user commands. Includes debugger modes, user-defined com-
mands, and debugger variables.

DEPRECATED: A feature that is still available but may be eliminated in a future release.

DISTRIBUTED DEBUGGING: The action of debugging a program that is running on
more than one host in a network. The hosts can be homogeneous or heteroge-
neous. For example, programs written with message-passing libraries such as Paral-
lel Virtual Machine (PVM) or Parallel Macros (PARMACS) run on more than one host.
388 TotalView Users Guide Version 6.2

Glossary

dive stack – event point
DIVE STACK: A series of nested dives that were performed in the same Variable Win-
dow. The number of greater-than symbols (>) in the upper left-hand corner of a
Variable Window indicates the number of nested dives on the dive stack. Each time
that you undive, TotalView pops a dive from the dive stack and decrements the
number of greater-than symbols shown in the Variable Window.

DIVING: The action of displaying more information about an item. For example, if you
dive into a variable in TotalView, a window appears with more information about the
variable.

DOPE VECTOR: This is a runtime descriptor that contains all information about an
object that requires more information than is available as a single pointer or value.
For example, you might declare a Fortran 90 pointer variable that is a pointer to
some other object but which has its own upper bound as follows:

integer, pointer, dimension (:) :: iptr

Assume that you initialize it as follows:

iptr => iarray (20:1:-2)

iptr is now a synonym for every other element in the first twenty elements of iarray,
and this pointer array is in reverse order. For example, iptr(1) maps to iarray(20),
iptr(2) maps to iarray(18), and so on.

A compiler represents an iptr object using a run time descriptor) that contains (at
least) elements such as a pointer to the first element of the actual data, a stride
value, and a count of the number of elements (or equivalently an upper bound).

DPID: Debugger ID. This is the ID TotalView uses for processes.

EDITING CURSOR: A black rectangle that appears when a TotalView GUI field is
selected for editing. You use field editor commands to move the editing cursor.

EVALUATION POINT: A point in the program where TotalView evaluates a code frag-
ment without stopping the execution of the program.

EVENT LOG: A file containing a record of events for each process in a program.

EVENT POINT: A point in the program where TotalView writes an event to the event log
for later analysis with TimeScan.
Version 6.2 TotalView Users Guide 389

Glossary

executable – group of interest
EXECUTABLE: A compiled and linked version of source files, containing a “main” entry
point.

EXPRESSION: An expression consists of symbols (possibly qualified), constants, and
operators, arranged in the syntax of the current source language. Not all Fortran 90,
C, and C++ operators are supported.

EXTENT: The number of elements in the dimension of an array. For example, a Fortran
array of integer(7,8) has an extent of 7 in one dimension (7 rows) and an extent of 8
in the other dimension (8 columns).

FIELD EDITOR: A basic text editor that is part of TotalView’s interface. The field editor
supports a subset of GNU Emacs commands.

FOCUS: The set of groups, processes, and threads upon which a CLI command acts.
The current focus is indicated in the CLI prompt (if you’re using the default
prompt).

FRAME: An area in stack memory containing the information corresponding to a single
invocation of a subprocedure. See stack frame.

FRAME POINTER: See stack pointer.

FULLY QUALIFIED (SYMBOL): A symbol is fully qualified when each level of source
code organization is included. For variables, those levels are executable or library,
file, procedure or line number, and variable name.

GID: The TotalView group ID.

IMAGE: All of the programs, libraries, and other components that make up your execut-
able is called an image.

GOI: The group of interest. This is the group that TotalView uses when it is trying to
determine what to step, stop, and the like.

GROUP: When TotalView starts processes, it places related processes in families. These
families are called “groups.”

GROUP OF INTEREST: The primary group that is affected by a command. This is the
group that TotalView uses when it is trying to determine what to step, stop, and the
like.
390 TotalView Users Guide Version 6.2

Glossary

heap – misd
HEAP: An area of memory that your program uses when it dynamically allocates blocks
of memory. It is also how people describe my car.

HOST MACHINE: The machine on which the TotalView debugger is running.

INITIAL PROCESS: The process created as part of a load operation, or that already
existed in the runtime environment and was attached by TotalView or the CLI.

INFINITE LOOP: See loop, infinite.

LVALUE: A symbol name or expression suitable for use on the left-hand side of an
assignment statement in the corresponding source language. That is, the expres-
sion must be appropriate as the target of an assignment.

LHS EXPRESSION: This is a synonym for lvalue.

LOCKSTEP GROUP: All threads that are at the same PC (program counter). This group
is a subset of a workers group. A lockstep group only exists for stopped threads. All
threads in the lockstep group are also in a workers group. By definition, all mem-
bers of a lockstep group are in the same workers group. That is, a lockstep group
cannot have members in more than one workers group or more than one control
group.

LOOP, INFINITE: see infinite loop.

LOWER BOUND: The first element in the dimension of an array or the slice of an array.
By default, the lower bound of an array is 0 in C and 1 in Fortran, but the lower
bound can be any number, including negative numbers.

MACHINE STATE: Convention for describing the changes in memory, registers, and
other machine elements as execution proceeds.

MANAGER THREAD: A thread created by the operating system. In most cases, you do
not want to manage or examine manager threads.

MESSAGE QUEUE: A list of messages sent and received by message-passing programs.

MIMD: An acronym for “Multiple Instruction, Multiple Data,” describing a type of paral-
lel computing.

MISD: An acronym for “Multiple Instruction, Single Data,” describing a type of parallel
computing.
Version 6.2 TotalView Users Guide 391

Glossary

mpi – parcel
MPI: This is an acronym for “Message Passing Interface.”

MPICH: MPI/Chameleon (Message Passing Interface/Chameleon) is a freely available
and portable MPI implementation. MPICH was written as a collaboration between
Argonne National Lab and Mississippi State University. For more information, see
www.mcs.anl.gov/mpi.

MPMD (MULTIPLE PROGRAM MULTIPLE DATA) PROGRAMS: A program involving
multiple executables, executed by multiple threads and processes.

MUTEX (MUTUAL EXCLUSION): Techniques for sharing resources so that different
users do not conflict and cause unwanted interactions.

NATIVE DEBUGGING: The action of debugging a program that is running on the same
machine as TotalView.

NESTED DIVE: TotalView lets you dive into pointers, structures, or arrays in a variable.
When you dive into one of these elements, TotalView updates the display so that
the new element is displayed. So, a nested dive is a dive within a dive. You can return
to the previous display by selecting the left-facing arrow in the top-right corner of
the window.

NODE: A machine on a network. Each machine has a unique network name and
address.

OUT OF SCOPE: When symbol lookup is performed for a particular symbol name and it
isn’t found in the current scope or any containing scopes, the symbol is said to be
out of scope.

PARALLEL PROGRAM: A program whose execution involves multiple threads and pro-
cesses.

PARALLEL TASKS: Tasks whose computations are independent of each other, so that
all such tasks can be performed simultaneously with correct results.

PARALLELIZABLE PROBLEM: A problem that can be divided into parallel tasks. This
may require changes in the code and/or the underlying algorithm.

PARCEL: The number of bytes required to hold the shortest instruction for the target
architecture.
392 TotalView Users Guide Version 6.2

Glossary

parent process – program control group
PARENT PROCESS: A process that calls fork() to spawn other processes (usually called
“child processes”).

PARMACS LIBRARY: A message-passing library for creating distributed programs that
was developed by the German National Research Centre for Computer Science.

PARTIALLY QUALIFIED (SYMBOL): A symbol name that includes only some of the lev-
els of source code organization (for example, filename and procedure, but not exe-
cutable). This is permitted as long as the resulting name can be associated
unambiguously with a single entity.

PC: This is an abbreviation for Program Counter.

PID: Depending on context, this is either the “process ID” or the “program ID.” In most
cases, this will be a process ID.

POI: The process of interest. This is the process that TotalView uses when it is trying to
determine what to step, stop, and the like.

PROCESS: An executable that is loaded into memory and is running (or capable of
running).

PROCESS GROUP: A group of processes associated with a multiprocess program. A
process group includes program control groups and share groups.

PROCESS/THREAD IDENTIFIER: A unique integer ID associated with a particular pro-
cess and thread.

PROCESS OF INTEREST: The primary process that TotalView uses when it is trying to
determine what to step, stop, and the like. This is abbreviated as POI.

PROGRAM EVENT: A program occurrence that is being monitored by TotalView or the
CLI, such as a breakpoint.

PROGRAM CONTROL GROUP: A group of processes that includes the parent process
and all related processes. A program control group includes children that were
forked (processes that share the same source code as the parent) and children that
were forked with a subsequent call to execve() (processes that don’t share the
same source code as the parent). Contrast with share group.
Version 6.2 TotalView Users Guide 393

Glossary

program state – serial line debugging
PROGRAM STATE: A higher-level view of the machine state, where addresses, instruc-
tions, registers, and such, are interpreted in terms of source program variables and
statements.

P/T (PROCESS/THREAD) SET: The set of threads drawn from all threads in all pro-
cesses of the target program.

PVM LIBRARY: Parallel Virtual Machine library. A message-passing library for creating
distributed programs that was developed by the Oak Ridge National Laboratory and
the University of Tennessee.

RACE CONDITION: A problem that occurs when threads try to simultaneously access a
resource. The result can be a deadlock, data corruption, or a program fault.

REMOTE DEBUGGING: The action of debugging a program that is running on a differ-
ent machine than TotalView. The machine on which the program is running can be
located many miles away from the machine on which TotalView is running.

RESUME COMMANDS: Commands that cause execution to restart from a stopped
state: dstep, dgo, dcont, dwait.

RHS EXPRESSION: This is a synonym for rvalue.

RVALUE: An expression suitable for inclusion on the right-hand side of an assignment
statement in the corresponding source language. In other words, an expression
that evaluates to a value or collection of values.

SATISFACTION SET: The set of processes and threads that must be held before a bar-
rier can be satisfied.

SATISFIED: A condition indicating that all processes or threads in a group have
reached a barrier. Prior to this event, all executing processes and threads are either
running because they have not yet hit the barrier or are being held at the barrier
because not all of the processes or threads have reached it. After the barrier is satis-
fied, the held processes or threads are released, which means they can now be run.
Prior to this event, they could not be run.

SERIAL EXECUTION: Execution of a program sequentially, one statement at a time.

SERIAL LINE DEBUGGING: A form of remote debugging where TotalView and the
TotalView Debugger Server communicate over a serial line.
394 TotalView Users Guide Version 6.2

Glossary

service thread – source file
SERVICE THREAD: A thread whose purpose is to “service” or manage other threads.
For example, queue managers and print spoolers are service threads. There are two
kinds of service threads: those created by the operating system or runtime system
and those created by your program. If a service thread is not created by your pro-
gram, you won’t be interested in debugging it. If your program is creating a service
thread, however, you will probably debug it separately from the rest of your pro-
gram.

SHARE GROUP: All the processes in a control group that share the same code. In most
cases, your program will have more than one share group. Share groups, like con-
trol groups, can be local or remote.

SHARED LIBRARY: A compiled and linked set of source files that are dynamically
loaded by other executables—and have no “main” entry point.

SIGNALS: Messages informing processes of asynchronous events, such as serious
errors. The action the process takes in response to the signal depends on the type
of signal and whether or not the program includes a signal handler routine, a rou-
tine that traps certain signals and determines appropriate actions to be taken by
the program.

SIMD: An acronym for “Single Instruction, Multiple Data,” describing a type of parallel
computing.

SISD: An acronym for “Single Instruction, Single Data,” describing a type of parallel
computing.

SINGLE STEP: The action of executing a single statement and stopping (as if at a
breakpoint).

SLICE: A subsection of an array, which is expressed in terms of a lower bound, upper
bound, and stride. Displaying a slice of an array can be useful when you are working
with very large arrays.

SOID: An acronym for “symbol object ID”. A soid uniquely identifies all information
within TotalView. It also represents a handle by which this information can be
accessed.

SOURCE FILE: Program file containing source language statements. TotalView allows
you to debug FORTRAN 77, Fortran 90, Fortran 95, C, C++, and assembler.
Version 6.2 TotalView Users Guide 395

Glossary

source location – stl
SOURCE LOCATION: For each thread, the source code line it will execute next. This is a
static location, indicating the file and line number; it does not, however, indicate
which invocation of the subprocedure is involved.

SPAWNED PROCESS: The process created by a user process executing under debugger
control.

SPMD (SINGLE PROGRAM MULTIPLE DATA) PROGRAMS: A program involving just
one executable, executed by multiple threads and processes.

STACK: A portion of computer memory and registers used to hold information tempo-
rarily. The stack consists of a linked list of stack frames that holds return locations
for called routines, routine arguments, local variables, and saved registers.

STACK FRAME: Whenever your program calls a function, it creates a set of information
that includes the local variables, arguments, contents of the registers used by an
individual routine, a frame pointer pointing to the previous stack frame, and the
value of the program counter (PC) at the time the routine was called. The informa-
tion for one function is called a “stack frame” as it is placed on your program’s
stack.

When your program begins executing, it has only one frame: the one allocated for
function main(). As your program calls functions, new frames are allocated. When a
function returns to the function from which it is called, the frame is deallocated.

STACK POINTER: A pointer to the area of memory where subprocedure arguments,
return addresses, and similar information is stored. This is also called a “frame
pointer.”

STACK TRACE: A sequential list of each currently active routine called by a program
and the frame pointer pointing to its stack frame.

STATIC (SYMBOL) SCOPE: A region of a program's source code that has a set of sym-
bols associated with it. A scope can be nested inside another scope.

STEPPING: Advancing program execution by fixed increments, such as by source code
statements.

STL: A TLA for Standard Template Library.
396 TotalView Users Guide Version 6.2

Glossary

stop set – target machine
STOP SET: A set of threads that should be stopped once an action point has been
triggered.

STOPPED/HELD STATE: The state of a process whose execution has paused in such a
way that another program event (for example, arrival of other threads at the same
barrier) will be required before it is capable of continuing execution.

STOPPED/RUNNABLE STATE: The state of a process whose execution has been
paused (for example, when a breakpoint triggered or due to some user command)
but can continue executing as soon as a resume command is issued.

STOPPED STATE: The state of a process that is no longer executing, but will eventually
execute again. This is subdivided into stopped/runnable and stopped/held.

STRIDE: The interval between array elements in a slice and the order in which the ele-
ments are displayed. If the stride is 1, every element between the lower bound and
upper bound of the slice is displayed. If the stride is 2, every other element is dis-
played. If the stride is –1, every element between the upper bound and lower bound
(reverse order) is displayed.

SYMBOL: Entities within program state, machine state, or debugger state.

SYMBOL LOOKUP: Process whereby TotalView consults its debugging information to
discover what entity a symbol name refers to. Search starts with a particular static
scope and occurs recursively so that containing scopes are searched in an outward
progression.

SYMBOL NAME: The name associated with a symbol known to TotalView (for example,
function, variable, data type, and such).

SYMBOL TABLE: A table of symbolic names (such as variables or functions) used in a
program and their memory locations. The symbol table is part of the executable
object generated by the compiler (with the –g option) and is used by debuggers to
analyze the program.

SYNCHRONIZATION: A mechanism that prevents problems caused by concurrent
threads manipulating shared resources. The two most common mechanisms for
synchronizing threads are mutual exclusion and condition synchronization.

TARGET MACHINE: The machine on which the process to be debugged is running.
Version 6.2 TotalView Users Guide 397

Glossary

target process set – type transformation facility
TARGET PROCESS SET: The target set for those occasions when operations can only
be applied to entire processes, not to individual threads in a process.

TARGET PROGRAM: The executing program that is the target of debugger operations.

TARGET P/T SET: The set of processes and threads that a CLI command will act on.

TASK: A logically discrete section of computational work. (This is an informal defini-
tion.)

THREAD: An execution context that normally contains a set of private registers and a
region of memory reserved for an execution stack. A thread runs in an address
space.

THREAD EXECUTION STATE: The convention of describing the operations available
for a thread, and the effects of the operation, in terms of a set of predefined states.

THREAD OF INTEREST: The primary thread that will be affected by a command. This is
abbreviated as TOI.

TID: The thread ID.

TLA: An acronym for “Three-Letter Acronym.” So many things from computer hard-
ware and software vendors are referred to by a three-letter acronym that yet
another acronym was created to describe these terms.

TOI: The thread of interest. This is the primary thread that will be affected by a com-
mand.

TRIGGER SET: The set of threads that can trigger an action point (that is, the threads
upon which the action point was defined).

TRIGGERS: The effect during execution when program operations cause an event to
occur (such as, arriving at a breakpoint).

TTF: See type transformation facility.

TVDSVR PROCESS: The TotalView Debugger Server process, which facilitates remote
debugging by running on the same machine as the executable and communicating
with TotalView over a TCP/IP port or serial line.

TYPE TRANSFORMATION FACILITY: A protocol that allows you to change the way
information is displayed. For example, an STL vector can be displayed as an array.
398 TotalView Users Guide Version 6.2

Glossary

undiscovered symbol – workers group
UNDISCOVERED SYMBOL: A symbol that is referred to by another symbol. For exam-
ple, a typedef is a reference to the aliased type.

UNDIVING: The action of displaying the previous contents of a window, instead of the
contents displayed for the current dive. To undive, you click on the undive icon in
the upper right-hand corner of the window.

UPPER BOUND: The last element in the dimension of an array or the slice of an array.

USER THREAD: A thread created by your program.

USER INTERRUPT KEY: A keystroke used to interrupt commands, most commonly
defined as ^C (Ctrl+C).

VARIABLE WINDOW: A TotalView window displaying the name, address, data type, and
value of a particular variable.

VISUALIZER PROCESS: A process that works with TotalView in a separate window,
allowing you to see a graphic representation of program array data.

WATCHPOINT: An action point specifying that execution should stop whenever the
value of a particular variable is updated.

WORKER THREAD: A thread in a workers group. These are threads created by your pro-
gram that performs the actual “work.” However, you might want to distinguishes
between threads that do the work and threads that assist the work. For example,
you might not consider a thread that acts as a queue manager as being a worker
thread even though TotalView considers it to be a worker thread. (This kind of
thread might be called a “worker-manager” thread.) All worker thread is always part
of a workers group.

WORKERS GROUP: All the worker threads in a control group. These threads can reside
in more than one share group.
Version 6.2 TotalView Users Guide 399

Glossary

workers group – workers group
400 TotalView Users Guide Version 6.2

Index
Symbols
scope separator character 295
$clid built-in variable 374
$count built-in function 6, 356,

359, 375
$countall built-in function 375
$countthread built-in function

375
$debug assembler pseudo op 382
$denorm filter 327
$duid built-in variable 374
$hold assembler pseudo op 382
$hold built-in function 376
$holdprocess assembler pseudo

op 382
$holdprocess built-in function

376
$holdprocessall built-in function

376
$holdprocessstopall assembler

pseudo op 382
$holdstopall assembler pseudo

op 382
$holdstopall built-in function 376
$holdthread assembler pseudo

op 382
$holdthread built-in function 376
$holdthreadstop assembler

pseudo op 382
$holdthreadstop built-in function

376
$holdthreadstopall assembler

pseudo op 382

$holdthreadstopall built-in
function 376

$holdthreadstopprocess
assembler pseudo op 382

$holdthreadstopprocess built-in
function 376

$inf filter 327
$long_branch assembler pseudo

op 382
$nan filter 327
$nanq filter 327
$nans filter 327
$ndenorm filter 327
$newval built-in function 368
$newval built-in variable 374
$nid built-in variable 374
$ninf filter 327
$oldval built-in function 368
$oldval built-in variable 374
$pdenorm filter 327
$pid built-in variable 374
$pinf filter 327
$processduid built-in variable

374
$stop assembler pseudo op 382
$stop built-in function 5, 359,

369, 376
$stopall assembler pseudo op

382
$stopall built-in function 376
$stopprocess assembler pseudo

op 382
$stopprocess built-in function

376

$stopthread assembler pseudo
op 382

$stopthread built-in function 376
$systid built-in variable 374
$tid built-in variable 374
$visualize built-in function 169,

170, 377
in animations 169
using casts 170

%C server launch replacement
characters 80

%D bulk server launch command
82

%D single process server launch
command 81

%H bulk server launch command
82

%L bulk server launch command
82

%L single process server launch
command 81

%N bulk server launch command
83

%P bulk server launch command
82

%P single process server launch
command 81

%R single process server launch
command 81

%t1 bulk server launch command
83

%t2 bulk server launch command
83
Version 6.2 TotalView Users Guide 401

Index

A

%V bulk server launch command
82

& intersection operator 270
. (dot) current set indicator 250,

271
. (period), in suffix of process

names 224
.rhosts file 84, 100
.totalview subdirectory 43
.tvdrc initialization files 43
.Xdefaults file 45, 69

autoLoadBreakpoints 69
deprecated resources 69
see also

www.etnus.com/Sup-
port/docs/xresources/Xre-
sources.html

/ slash in group specifier 256
/usr/lib/array/arrayd.conf file 82
: (colon), in array type strings 300
: as array separator 320
< first thread indicator 250
<address> data type 302
<char> data type 302
<character> data type 302
<code> 290
<code> data type 302, 304, 307
<complex*16> data type 302
<complex*8> data type 302
<complex> data type 302
<double precision> data type

302
<double> data type 302
<extended> data type 303
<float> data type 303
<int> data type 303
<integer*1> data type 303
<integer*2> data type 303
<integer*4> data type 303
<integer*8> data type 303
<integer> data type 303
<logical*1> data type 303
<logical*2> data type 303
<logical*4> data type 303
<logical*8> data type 303
<logical> data type 303
<long long> data type 303

<long> data type 303
<opaque> data type 306
<real*16> data type 303
<real*4> data type 303
<real*8> data type 303
<real> data type 303
<short> data type 303
<string> data type 298, 299,

303, 304
<void> data type 303, 304
> (right angle bracket), indicating

nested dives 292
@ action point marker, in CLI 340
– difference operator 270
| union operator 270
‘ module separator 312

A
–a command-line option 42, 201
–a passing arguments to program

option 42
a width specifier 257

examples 260
general discussion 259

abbreviating commands 203
absolute addresses, display

assembler as 217
acquiring processes 102
Action Point > At Location

command 5, 340, 342
Action Point > Delete All

command 344
Action Point > Properties

command 5, 140, 228, 338,
343, 344, 346, 348, 351, 354,
356

deleting barrier points 353
Action Point > Properties Dialog

Box figure 343, 346, 351
Action Point > Save All

command 370
Action Point > Set Barrier

command 351
Action Point > Suppress All

command 344
action point files 45
action point identifiers 207

never reused in a session 207
Action Point Properties and

Address Dialog Boxes figure
228

Action Point Properties Dialog
Box figure 6

Action Point Symbol figure 339
action points 207

see also barrier points
see also eval points
common properties 338
defined 5
definition 337
deleting 344
disabling 343
enabling 344
evaluation points 5
ignoring 344
list of 152
multiple addresses 340
saving 370
suppressing 344
unsuppressing 344
watchpoint 10

Action Points Page 137, 152
Action Points Pane 344
adapter_use option 99
adding command-line arguments

62
adding environment variables 70
adding members to a group 254
adding program arguments 43
Address Only (Absolute

Addresses) figure 217
address range conflicts 361
addresses

changing 306
editing 306
of machine instructions 307
specifying in variable window

289
tracking in variable window

286
advancing and holding processes

206
advancing program execution 206
aliases
402 TotalView Users Guide Version 6.2

Index

A

built-in 203
group 203
group, limitations 204

align assembler pseudo op 382
all width specifier 251
allocated arrays, displaying 306
altering groups 275
Ambiguous Addresses Dialog Box

figure 229
Ambiguous Function Dialog Box

342
Ambiguous Function Dialog Box

figure 213, 342
ambiguous function names 212,

342
Ambiguous Line Dialog Box figure

341
ambiguous locations 342
ambiguous names 214
ambiguous scoping 296
ambiguous source lines 227
analyzing memory 161
angle brackets, in windows 292
animation using $visualize 169
areas of memory, data type 304
arena specifiers 250

defined 250
incomplete 267
inconsistent widths 267

arenas
and scope 240
defined 240, 249
iterating over 250

ARGS variable 201
modifying 201

ARGS_DEFAULT variable 43, 62,
201

clearing 202
arguments

in server launch command 80,
85

passing to program 42
replacing 202
setting 61

Arguments page 62
argv, displaying 305

Array Data Filter by Range of
Values figure 328

array data filtering
by comparison 324
by range of values 327
for IEEE values 326

Array Data Filtering by
Comparison figure 326

Array Data Filtering for IEEE
Values figure 328

array data filtering, see arrays
filtering

array of structures, displaying 293
array pointers 287
array rank 165
array services handle (ash) 105
Array Statistics Window figure 331
Array Visualization figure 10
arrays

array data filtering 324
bounds 299
character 304
checksum statistic 331
colon separators 320
count statistic 331
deferred shape 314, 320
denormalized count statistic

332
display subsection 300
displaying 170, 319
displaying allocated 306
displaying argv 305
displaying contents 153
displaying declared 306
displaying multiple 170
displaying one element 323
displaying slices 319
diving into 291
editing dimension of 300
extent 300
filter conversion rules 325
filter expressions 329
filtering 300, 324, 326
filtering options 324
in C 299
in Fortran 300
infinity count statistic 332

laminating 334
limiting display 321
lower adjacent statistic 332
lower bound of slices 320
lower bounds 299, 300
maximum statistic 332
mean statistic 332
median statistic 332
minimum statistic 332
NaN statistic 332
non-default lower bounds 300
overlapping nonexistent

memory 319
pointers to 299
quartiles statistic 332
skipping elements 321
skipping over elements 320
slice 323
slice example 320, 321
slice initializing 187
slice refining 170
slice, printing 187
slices with the variable

command 322
slicing 8
sorting 330
standard deviation statistic

332
statistics 331
stride 320
stride elements 320
subsections 319
sum statistic 332
type strings for 299
upper adjacent statistic 333
upper bound 299
upper bound of slices 320
visualization 170
visualizing 167
zero count statistic 333

arrow over line number 150
Ascending command 330
ascii assembler pseudo op 382
asciz assembler pseudo op 382
ash (array services handle) 105
ASM icon 339, 345
assembler
Version 6.2 TotalView Users Guide 403

Index

B

absolute addresses 217
and –g compiler option 153
constructs 380
displaying 217
examining 216
expressions 380
in code fragment 354
symbolic addresses 217

Assembler > By Address
command 217

Assembler > Symbolically
command 217

Assembler command 216
Assembler Only (Symbolic

Addresses) figure 218
assembler-level action points 339
assigning output 200
assigning output to variable 200
assigning p/t set to variable 252
asynchronous processing 18
at breakpoint state 55
At Location command 5, 340,

342
Attach Subsets command 134
Attached Page 103, 146, 232, 233
Attached Page Showing Process

and Thread Status figure 54,
58

attached process states 55
attached thread states 55
attaching

restricting 134
restricting by communicator

135
selective 134
to a task 126
to all 135
to HP MPI job 98
to job 102
to MPICH application 94
to MPICH job 94
to none 135
to PE 102
to poe 102
to processes 49, 50, 102, 126,

134, 147
to PVM task 126

to relatives 52
to RMS processes 104
to SGI MPI job 105

attaching using File > New
Program 51

Auto Visualize command 172
Auto Visualize, in Directory

Window 172
auto_array_cast_bounds variable

288
auto_deref_in_all_c variable 288
auto_deref_in_all_fortran

variable 288
auto_deref_initial_c variable 288
auto_deref_initial_fortran

variable 288
auto_deref_nested_c variable

288
auto_deref_nested_fortran

variable 288
auto_save_breakpoints variable

370
autolaunch 73, 74

changing 84
defined 48
disabling 48, 74, 76, 84
launch problems 79
sequence 86

autoLoadBreakpoints .Xdefault
69

automatic dereferencing 287
automatic process acquisition 94,

99, 124
averaging data points 179
averaging surface display 179
axis, transposing 175

B
B state 55
backtick separator 312
backward icon 154
barrier points

see also process barrier
breakpoint

 13, 35, 221, 233, 350, 352
clearing 344
defined 207

defined (again) 350
deleting 353
satisfying 353
states 350
stopped process 354

baud rate, for serial line 88
bit fields 297
block scoping 294
blocking send operations 112
blocks, naming 295
bold data 7
Both command 216, 237
Both Source and Assembler

(Symbolic Addresses) figure
218

bounds for arrays 299
boxed line number 150, 241, 340
Breakpoint at Assembler

Instruction figure 345
breakpoint files 45
breakpoint operator 270
breakpoints

and MPI_Init() 101
apply to all threads 338
automatically copied from

master process 94
behavior when reached 345
changing for parallelization

137
clearing 146, 241, 344
conditional 354, 356, 375
copy, master to slave 94
countdown 356, 375
counting down 375
default stopping action 137
defined 207, 337
deleting 344
disabling 343
enabling 344
entering 105
example setting in

multiprocess program
349

fork() 348
ignoring 344
in child process 346
in parent process 346
404 TotalView Users Guide Version 6.2

Index

C

in spawned process 125
listing 152
machine-level 345
multiple processes 346
not shared in separated

children 348
placing 150
reloading 101
removed when detaching 53
removing 146
saving 370
set while a process is running

340
set while running parallel tasks

101
setting 101, 146, 189, 241,

339, 340, 346
shared by default in processes

348
sharing 347, 348
stop all related processes 347
suppressing 344
thread-specific 374
toggling 340
while stepping over 229

bss assembler pseudo op 383
built-in aliases 203
built-in functions

$count 6, 356, 359, 375
$countall 375
$countthread 375
$hold 376
$holdprocess 376
$holdprocessall 376
$holdstopall 376
$holdthread 376
$holdthreadstop 376
$holdthreadstopall 376
$holdthreadstopprocess 376
$stop 5, 359, 369, 376
$stopall 376
$stopprocess 376
$stopthread 376
$visualize 169, 170, 377
forcing interpretation 359

built-in type strings 302
built-in variables 374

$clid 374
$duid 374
$newval 374
$nid 374
$oldval 374
$pid 374
$processduid 374
$systid 374
$tid 374
forcing interpretation 375

Bulk Launch Page 79
bulk server launch 73, 76

command 77
connection timeout 78
enabling 76
on HP Alpha 83
on IBM RS/6000 83
on SGI MIPS 81

bulk server launch command
%D 82
%H 82
%L 82
%N 83
%P 82
%t1 83
%t2 83
%V 82
–callback_host 82
–callback_ports 82
–set_pws 82
–verbosity 82
–working_directory 82

bulk_incr_timeout variable 78
bulk_launch_base_timeout

variable 78
bulk_launch_enabled variable 77,

79
bulk_launch_string variable 77
bulk_launch_tmpefile1_trailer_

line variable 78
bulk_launch_tmpefile2_trailer_

line variable 78
bulk_launch_tmpfile1_header_

line variable 78
bulk_launch_tmpfile1_host_ lines

variable 78

bulk_launch_tmpfile2_header_
line variable 78

bulk_launch_tmpfile2_host_ lines
variable 78

By Address command 217
byte assembler pseudo op 383

C
C control group specifier 255, 257
C language

array bounds 299
arrays 299
filter expression 329
how data types are displayed

298
in code fragment 354
in evaluation points 377
type strings supported 298

C++
changing class types 309
display classes 307

C++ Type Cast to Base Class
Question Window figure 309

C++ Type Cast to Derived Class
Question Window figure 309

call stack 150
call tree

updating display 159
Call Tree command 159
–callback command-line option

84
–callback_host bulk server launch

command 82
–callback_option single process

server launch command 81
–callback_ports bulk server

launch command 82
capture command 200, 201
casting 297, 299

examples 304
to type 290
types of variable 297

Casting Code figure 291
CGROUP variable 254, 262
ch_lfshmem device 92
ch_mpl device 92
ch_p4 device 92, 95, 140
Version 6.2 TotalView Users Guide 405

Index

C

ch_shmem device 92, 95
changing autolaunch options 74
changing command-line

arguments 62
changing groups 275
changing precision 280
changing process thread set 248
changing program state 195
changing remote shell 84
changing size 280
changing values 156
changing variables 296
character arrays 304
chasing pointers 287, 291
Checkpoint and Restart Dialog

Boxes figure 236
checksum array statistic 331
child process names 224
children calling execve(), see

execve()
classes, displaying 307
Clear All STOP and EVAL

command 344
clearing

breakpoints 146, 241, 344, 346
continuation signal 234
evaluation points 146

CLI
and Tcl 193
components 193
in startup file 197
initialization 197
interface 195
introduced 14
invoking program from shell

example 197
not a library 193
output 200
relationship to TotalView 194
starting 41, 42, 196
starting from command

prompt 196
starting from TotalView GUI

196
starting program using 198

CLI and Tcl relationship 195
CLI and TotalView figure 194

CLI commands
abbreviating 203
assigning output to variable

200
capture 200, 201
dactions 338
dactions –load 101, 370
dactions –save 101, 370
dassign 296
dattach 42, 47, 49, 51, 53, 94,

102, 103, 206
dattach mprun 106
dbarrier 350, 352
dbarrier –e 356
dbarrier –stop_when_hit 140
dbreak 340, 342, 347
dbreak –e 356
dcheckpoint 235
ddelete 113, 342, 344, 353
ddetach 53
ddisable 343, 344, 354
ddown 231
default focus 249
denable 344
dfocus 229, 248, 249
dgo 97, 101, 105, 138, 226,

268
dgroups –add 254, 262
dhalt 138, 220, 229
dhold 222, 351
dhold –thread 223
dkill 139, 199, 206, 234
dlist 125
dload 42, 47, 48, 49, 80, 198,

206
dmstat 162
dnext 138, 227, 231
dnexti 227, 231
dout 232, 242
dprint 117, 119, 213, 238, 282,

286, 289, 301, 306, 310,
311, 313, 320, 323

dptsets 55, 224
drerun 198, 235

redirecting I/O 63
drestart 235
drun 198, 201, 202

redirecting I/O 63
dset 201, 203
dstatus 55, 232, 353
dstep 138, 227, 230, 241, 250,

252, 268
dstepi 227, 230
dunhold 222, 351
dunhold –thread 223
dunset 202
duntil 227, 231, 241, 244
dup 231, 286
dwhere 251, 268, 286
exit 46
run when starting TotalView 44

CLI prompt 198
CLI variables

ARGS 201
ARGS, modifying 201
ARGS_DEFAULT 43, 62, 201

clearing 202
auto_array_cast_bounds 288
auto_deref_in_all_c 288
auto_deref_in_all_fortran 288
auto_deref_initial_c 288
auto_deref_initial_fortran 288
auto_deref_nested_c 288
auto_deref_nested_fortran

288
auto_save_breakpoints 370
bulk_incr_timeout 78
bulk_launch_base_timeout 78
bulk_launch_enabled 77, 79
bulk_launch_string 77
bulk_launch_tmpefile1_trailer

_ line 78
bulk_launch_tmpefile2_trailer

_ line 78
bulk_launch_tmpfile1_header

_ line 78
bulk_launch_tmpfile1_host_

lines 78
bulk_launch_tmpfile2_header

_ line 78
bulk_launch_tmpfile2_host_li

nes 78
EXECUTABLE_PATH 48, 51
LINES_PER_SCREEN 201
406 TotalView Users Guide Version 6.2

Index

C

parallel_attach 137
parallel_stop 136
pop_at_breakpoint 59
pop_on_error 58
process_load_callbacks 45
PROMPT 203
search_path 61
server_launch_enabled 75, 79,

84
server_launch_string 75
server_launch_timeout 76
SHARE_ACTION_POINT 343,

347, 348
STOP_ALL 343, 347
warn_step_throw 58

CLI xterm Window figure 196
$clid built-in variable 374
Close command 154, 290
Close command (Visualizer) 172
Close Relatives command 154
Close Similar command 154, 290
Close, in Data Window 172
closed loop, see closed loop
closing similar windows 154
closing variable windows 290
closing windows 154
cluster ID 374
code constructs supported

Assembler 380
C 377
Fortran 378

<code> data type 304, 307
code fragments 354, 372, 373

modifying instruction path 355
when executed 355
which programming languages

354
colons as array separators 320
comm assembler pseudo op 383
command arguments 201

clearing example 201
passing defaults 202
setting 201

command line arguments 61, 198
passing to TotalView 42

Command Line command 42, 196
command line-options

launch Visualizer 180
command prompts 203

default 203
format 203
setting 203
starting the CLI from 196

command-line options
–a 42, 201
–remote 43
–s startup 197

commands 41
Action Point > At Location 5,

340
Action Point > Delete All 344
Action Point > Properties 140,

344, 346, 348, 351, 354
Action Point > Save All 370
Action Point > Set Barrier 351
Action Point > Suppress All

344
arguments 61
Auto Visualize (Visualizer) 172
change Visualizer launch 167
Clear All STOP and EVAL 344
CLI, see CLI commands
dmpirun 96, 97
dpvm 124
Edit > Copy 156
Edit > Cut 156
Edit > Delete 156
Edit > Find 5, 212
Edit > Find Again 212
Edit > Paste 156
File > Close 154, 290
File > Close (Visualizer) 172
File > Close Similar 154, 290
File > Delete (Visualizer) 172
File > Directory (Visualizer)

172
File > Edit Source 214, 218
File > Exit (Visualizer) 172
File > New Base Window

(Visualizer) 172
File > New Program 46, 49, 51,

53, 80, 84, 88
File > Options (Visualizer) 172,

174

File > Preferences 64
File > Save Pane 157
File > Search Path 48, 51, 59,

61, 102
File > Signals 57
Group > Attach Subsets 134
Group > Control > Go 221
Group > Delete 113, 234
Group > Edit 254, 275
Group > Go 101, 138, 226,

349
Group > Halt 138, 229
Group > Hold 222
Group > Next 138
Group > Release 222
Group > Restart 235
Group > Run To 138
Group > Share > Halt 220
Group > Step 138
Group > Workers > Go 225
group or process 138
input and output files 62
interrupting 195
mpirun 98, 104
poe 93, 99
Process > Create 226
Process > Detach 53
Process > Go 97, 98, 101,

103, 105, 138, 226
Process > Halt 138, 220, 229
Process > Hold 222
Process > Next 227
Process > Next Instruction

227
Process > Out 242
Process > Run To 227, 241
Process > Startup 43
Process > Startup Parameters

62, 63
Process > Step 227
Process > Step Instruction

227
Process Startup Parameters,

Environment Page 70
prun 103
pvm 122, 124
Quit Debugger 46
Version 6.2 TotalView Users Guide 407

Index

C

remsh 84
rsh 84, 100
server launch, arguments 80
Set Signal Handling Mode 123
single-stepping 229
Startup 43
step 4
Thread > Continuation Signal

52, 233
Thread > Go 226
Thread > Hold 222
Thread > Set PC 237
Tools > Call Tree 159
Tools > Command Line 196
Tools > Create Checkpoint

235
Tools > Evaluate 165, 170,

371
Tools > Memory Statistics 161
Tools > Message 107
Tools > Message Queue 108,

109
Tools > P/T Set Browser 271
Tools > PVM Tasks 126
Tools > Restart 235
Tools > Statistics 331
Tools > Thread Objects 317
Tools > Variable Browser 283
Tools > Visualize 10, 169
Tools > Watchpoint 10, 368
totalview 41, 96, 100, 104

core files 41, 53
totalviewcli 41, 42, 104
tvdsvr 73

launching 80
View > Assembler > By

Address 217
View > Assembler >

Symbolically 217
View > Dive Anew 283
View > Dive In All 293
View > Dive Thread 317
View > Dive Thread New 317
View > Graph (Visualizer) 172
View > Laminate > None 333
View > Laminate > Process

333

View > Laminate > Thread
333

View > Lookup Function 212,
213, 215, 216

View > Lookup Variable 282,
286, 289, 312, 322

View > Reset 214, 216
View > Reset (Visualizer) 176,

179
View > Sort > Ascending 330
View > Sort > Descending

330
View > Sort > None 330
View > Source As >

Assembler 216
View > Source As > Both 216,

237
View > Source As > Source

216
View > Surface (Visualizer) 172
View > Variable 117
View >Lookup 125
Visualize 10
visualize 167, 180
Window > Duplicate 154, 292
Window > Duplicate Base 154,

292
Window > Memorize 155
Window > Memorize All 155
Window > Update 103, 221,

233
Windows > Update (PVM) 126

common block
displaying 310
diving on 310
members have function scope

310
compiled expressions 358, 359

allocating patch space for 360
performance 359

compilers
mpcc_r 109
mpxlf_r 109
mpxlf90_r 109

compiling
considerations 40
–g compiler option 40

multiprocess programs 40
–O option 40
optimization 40
programs 40

compiling programs 3
completion rules for arena

specifiers 267
compound objects 301
conditional breakpoints 354, 356,

375
conditional watchpoints, see

watchpoints
conf file 82
configure command 92
configuring the Visualizer 165
connection for serial line 87
connection timeout 76, 78

altering 74
connection timeout, bulk server

launch 78
contained functions 312

displaying 313
context menus 146
continuation signal 234

clearing 234
Continuation Signal command

52, 233
continuing with a signal 233
continuous execution 195
contour lines 179
contour settings 177
control groups 26, 223

defined 25
discussion 223
overview 254
specifier for 255

control in parallel environments
206

control in serial environments
206

control registers 237
interpreting 237

controlling program execution
206

conversion rules for filters 325
Copy command 156
copying 156
408 TotalView Users Guide Version 6.2

Index

D

copying between windows 156
core dump, naming the signal

that caused 53
core files

can only debug local 53
debugging 42
examining 53
in totalview command 41, 53
loading 47

correcting programs 358
count array statistic 331
$count built-in function 375
$countall built-in function 375
countdown breakpoints 356, 375
$countthread built-in function

375
CPU registers 237
cpu_use option 99
Create Checkpoint command 235
creating groups 29, 226
creating new processes 199
creating process (without starting

it) 226
creating processes 61, 225

and starting them 225
using Step 227
without starting them 226

creating threads 20
crt0.o module 125
Ctrl+C 195
current focus 272
current location of program

counter 150
current queue state 107
current set indicator 250, 271
current stack frame 216
current working directory 60, 61
Cut command 156

D
D control group specifier 255
dactions command 338

–load 101, 370
–save 101, 370

daemons 18, 20
dassign command 296
data

editing 7
examining 6
filtering 8
slicing 8
viewing, from Visualizer 167

data assembler pseudo op 383
data filtering, see arrays

filtering
data pane, laminated 335
data precision, changing display

65
data segment 162
data segment memory 162
data types

see also TotalView data types
C++ 307
changing 297
changing class types in C++

309
for visualization 167
int 299
int* 299
int[] 299
opaque data 306
pointers to arrays 299
predefined 302
to visualize 167

data watchpoints, see
watchpoints

data window (Visualizer) 172
display commands 173
scaling 176
translating 176
zooming 176

data window, see Variable Window
data_format variables 281
dataset

defined for Visualizer 167
deleting 172
selecting 171
showing parameters 179

dattach
mprun command 106

dattach command 42, 47, 49, 51,
53, 94, 102, 103, 206

dbarrier command 350, 352
–e 356

–stop_when_hit 140
dbfork library 41, 347

linking with 41
dbreak command 340, 342, 347

–e 356
dcheckpoint command 235
ddelete command 113, 342, 344,

353
ddetach command 53
ddisable command 343, 344, 354
ddown command 231
deadlocks 244

message passing 109
$debug assembler pseudo op 382
–debug, using with MPICH 113
debugger initialization 197
debugger PID 205
debugger server 73

see also, tvdsvr
starting manually 79

Debugger Unique ID (DUID) 374
debugging

executable file 41
multiprocess programs 41
not compiled with –g 40
OpenMP applications 113
programs that call execve 41
programs that call fork 41
PVM applications 121
QSW RMS 103
SHMEM library code 128

debugging a core file 42
debugging Fortran modules 312
debugging on a remote host 48
debugging over a serial line 86
debugging PE applications 99
debugging PVM applications 122
debugging session 206
debugging techniques 34
declared arrays, displaying 306
def assembler pseudo op 383
default address range conflicts

361
default control group specifier

255
default focus 263
default process/thread set 248
Version 6.2 TotalView Users Guide 409

Index

D

default text editor 214
default width specifier 251
deferred shape array

definition 320
types 314

Delete All command 344
Delete command 139, 156, 234
Delete command (Visualizer) 172
Delete, in Data Window 172
deleting

action points 344
datasets 172
groups 275
processes 355
programs 234

denable command 344
denorm filter 327
denormalized count array

statistic 332
DENORMs 324
deprecated X defaults 69
dereferencing

automatic 287
controlling 65
pointers 287

Descending command 330
Detach command 53
detaching 135
detaching from processes 52
detaching removes all

breakpoints 53
determining scope 240
dfocus command 229, 248

example 249
dgo command 97, 101, 105, 138,

226, 268
dgroups command

–add 262
–add command 254
–remove 35

dhalt command 138, 220, 229
dhold command 222, 351

–process 223
–thread 223

difference operator 270
dimmed information, in the Root

Window 232

Dimmed Process Information in
the Root Window figure 233

directories, setting order of
search 59

Directory command (Visualizer)
172

directory search path 123
Directory Window, menu

commands 172
Directory, in Data Window 172
disabling

action points 343
autolaunch 74, 84
autolaunch feature 76
visualization 165

disassembled machine code 213
in variable window 307

discard dive stack 214
discard mode for signals 59
discarding signal problem 59
disconnected processing 18
Display of Random Data figure

176
displaying 153

areas of memory 289
argv array 305
array data 153
arrays 319
common blocks 310
declared and allocated arrays

306
Fortran data types 310
Fortran module data 310
global variables 282, 283
machine instructions 290, 307
memory 289
pointer 153
pointer data 153
registers 284
remote hostnames 147
stack trace pane 153
structs 300
subroutines 153
thread objects 317
typedefs 300
unions 301
variable 153

Variable Windows 281
Displaying a Fortran Structure

figure 293
displaying a process window 152
Displaying a Union figure 301
Displaying C Structures and

Arrays figure 294
Displaying C++ Classes that Use

Inheritance figure 308
Displaying Long STL Names figure

288
displaying long variable names

286
Displaying Scoped Variables

figure 283
distributed debugging

see also PVM applications
remote server 73

dive icon 154, 291
Dive In All command 293
dive stack 292

retaining 154
Dive Thread command 317
Dive Thread New command 317
dividing work up 18
diving 102, 108, 146, 152

defined 7
from groups page 224
in a laminated pane 334
in a variable window 291
in source code 214
into a pointer 153, 291
into a process 153
into a stack frame 153
into a structure 291
into a thread 153
into a variable 7, 153
into an array 291
into formal parameters 284
into Fortran common blocks

310
into function name 214
into global variables 282, 283
into local variables 284
into MPI buffer 111
into MPI processes 111
into parameters 284
410 TotalView Users Guide Version 6.2

Index

E

into pointer 153
into processes 50, 153
into PVM tasks 126
into registers 284
into routines 153
into the PC 290
into threads 150, 153
into variables 153
nested 153
nested dive defined 291
using middle mouse button

156
Diving into Common Block List in

Stack Frame Pane figure 311
Diving into Local Variables and

Registers figure 285
dkill command 139, 199, 206, 234
dlist command 125
dload command 42, 47, 48, 49,

80, 198, 206
returning process ID 200

DMPI 109
dmpirun command 96, 97
dmstat command 162
dnext command 138, 227, 231
dnexti command 227, 231
double assembler pseudo op 383
dout command 232, 242
dpid 205
dprint command 117, 119, 213,

238, 282, 286, 289, 301, 306,
310, 311, 313, 320, 323

dptsets command 55, 224
DPVM

see also PVM
enabling support for 124
must be running before

TotalView 124
starting session 123

dpvm command 124
drawing options 175
drerun command 198, 235

redirecting I/O 63
drestart command 235
drun command 198, 201, 202

redirecting I/O 63
dset command 201, 203

dstatus command 55, 232, 353
dstep command 227, 230, 241,

250, 252, 268
dstep commands 138
dstepi command 227, 230
DUID 374

of process 374
$duid built-in variable 374
dunhold command 222, 351

–thread 223
dunset command 202
duntil command 227, 231, 241,

244
dup command 231
dup commands 286
Duplicate Base command 154,

292
Duplicate command 154, 292
dwhere command 251, 268, 286
dynamic call tree 159
dynamic patch space allocation

360
dynamically linked, stopping after

start() 125

E
E state 55
Edit > Copy command 156
Edit > Cut command 156
Edit > Delete command 156
Edit > Find Again command 212
Edit > Find command 5, 212
Edit > Find Dialog Box figure 154,

212
Edit > Paste command 156
edit mode 146
Edit Source command 214, 218
editing

addresses 306
compound objects or arrays

301
laminated pane 335
source text 218
text 156
type strings 297

Editing argv figure 305
Editing Cursor figure 156

EDITOR environment variable 214
editor launch string 218
effects of parallelism on debugger

behavior 204
Enable action point 344
Enable Single Debug Server

Launch check box 84
Enable Visualizer Launch check

box 165
enabling

action points 344
enabling action points 344
Environment Page 70
environment variables 70

adding 70
before starting poe 99
EDITOR 214
how to enter 70
LC_LIBRARY_PATH 45
LM_LICENSE_FILE 45
MP_ADAPTER_USE 99
MP_CPU_USE 99
MP_EUIDEVELOP 112
PATH 51, 59, 60
SHLIB_PATH 45
TOTALVIEW 93, 139
TVDSVRLAUNCHCMD 80

equiv assembler pseudo op 383
error operators 270
error state 55
errors, in multiprocess program

58
EVAL icon 146

for evaluation points 146
eval points

see evaluation points
Evaluate command 165, 170,

371, 373
evaluating an expression in a

watchpoint 363
evaluating expressions 371
evaluating state 207
evaluation points 5, 354

assembler constructs 380
C constructs 377
clearing 146
commands 375
Version 6.2 TotalView Users Guide 411

Index

F

defined 207, 338
defining 354
examples 356
Fortran constructs 378
listing 152
lists of 152
machine level 355
patching programs 6
printing from 5
saving 355
setting 146, 189, 356
using $stop 5
where generated 355

event log window 71
event points listing 152
examining

core files 53
data 6
process groups 224
processes 223
source and assembler code

216
stack trace and stack frame

284
status and control registers

237
Example of Control Groups and

Share Groups figure 224
exception enable modes 238
executable, specifying name in

scope 295
EXECUTABLE_PATH variable 48,

51
setting 185

executables
debugging 41
loading 47

executing
out of function 232
to the completion of a

function 232
executing a startup file 44
execution

controlling 206
resuming 221

execution models 12
execve() 41, 223, 347, 348

attaching to processes 49
debugging programs that call

41
setting breakpoints with 348

existent operator 270
exit CLI command 46
Exit command 46
Exit command (Visualizer) 172
exiting TotalView 46
expression evaluation window

compiled and interpreted
expressions 358

discussion 371
expressions 270, 347

can contain loops 371
compiled 359
evaluating 371
performance of 359

extent of arrays 300

F
figures

Action Point > Properties
Dialog Box 343, 346, 351

Action Point Properties and
Address Dialog Boxes 228

Action Point Properties Dialog
Box 6

Action Point Symbol 339
Address Only (Absolute

Addresses) 217
Ambiguous Addresses Dialog

Box 229
Ambiguous Function Dialog

Box 213, 342
Ambiguous Line Dialog Box

341
Array Data Filter by Range of

Values 328
Array Data Filtering by

Comparison 326
Array Data Filtering for IEEE

Values 328
Array Statistics Window 331
Array Visualization 10
Assembler Only (Symbolic

Addresses) 218

Attached Page Showing
Process and Thread
Status 54, 58

Both Source and Assembler
(Symbolic Addresses) 218

Breakpoint at Assembler
Instruction Dialog Box
345

C++ Type Cast to Base Class
Question Window 309

C++ Type Cast to Derived
Class Question Window
309

Casting Code 291
Checkpoint and Restart Dialog

Boxes 236
CLI xterm Window 196
Dimmed Process Information

in the Root Window 233
Display of Random Data 176
Displaying a Fortran Structure

293
Displaying a Union 301
Displaying C Structures and

Arrays 294
Displaying C++ Classes that

Use Inheritance 308
Displaying Long STL Names

288
Displaying Scoped Variables

283
Diving into Common Block List

in Stack Frame Pane 311
Diving into Local Variables and

Registers 285
Edit > Find Dialog Box 154,

212
Editing argv 305
Editing Cursor 156
Example of Control Groups

and Share Groups 224
File > Exit Dialog Box 46
File > New Program 51
File > New Program Dialog

Box Page 47
File > Preferences

Parallel Page 136
412 TotalView Users Guide Version 6.2

Index

F

File > Preferences Dialog Box:
Action Points Page 65

File > Preferences Dialog Box:
Bulk Launch Page 66

File > Preferences Dialog Box:
Dynamic Libraries Page
67

File > Preferences Dialog Box:
Fonts Page 68

File > Preferences Dialog Box:
Launch Strings Page 66

File > Preferences Dialog Box:
Options Page 64

File > Preferences Dialog Box:
Parallel Page 67

File > Preferences Dialog Box:
Pointer Dive Page 69

File > Preferences Launch
Strings Page 166

File > Preferences: Action
Points Page 348

File > Preferences: Bulk
Launch Page 77

File > Preferences: Formatting
Page 280

File > Preferences: Server
Launch Strings Page 75

File > Save Pane Dialog Box
157

File > Search Path Dialog Box
60

Five Processes and Their
Groups on Two
Computers 29

Five Processors and Processor
Groups (Part 1) 27

Five Processors and Processor
Groups (Part 2) 28

Fortran 90 Pointer Value 316
Fortran 90 User-Defined Type

314
Fortran Array with Inverse

Order and Limited Extent
322

Fortran Modules Window 313
Four Processor Computer 21

Four-Processor Computer
Networks 22

Global Variables Window 287
Graph Options Dialog Box 175
Group > Attach Subset Dialog

Box 134
Group > Edit Group 275
Laminated Array and Structure

335
Laminated Scalar Variable 334
Laminated UPC Variable

Window 132
Laminated Variable Window 12
List and Vector

Transformations 279
Mail with Daemon 19
Manual Launching of

Debugger Server 80
Message Queue Graph 13
Message Queue Graph window

107
Message Queue Window 110
Message Queue Window

Showing Pending Receive
Operation 111

More Conditions 7
Nested Dive 153
Nested Dives 292
OpenMP Shared Variable 118
OpenMP Stack Parent Token

Line 120
OpenMP THREADPRIVATE

Common Block Variable
120

P/T Set Browser Window 272
P/T Set Browser Windows (Part

1) 273
P/T Set Browser Windows (Part

2) 274
P/T Set Control in the Process

Window 246
P/T Set Control in the Tools >

Evaluate Window 246
PC Arrow Over a Stop Icon 346
Pointer to a Shared Variable

133

Process > Startup Parameters
Dialog Box

Arguments Page 62
Process > Startup Parameters

Dialog Box: Environment
Page 71

Process > Startup Parameters
Dialog Box: Standard I/O
page 63

Process and Thread Labels in
the Process Window 55

Process and Thread Switching
Icons 12

Process Window 4, 151
Process Window Tag Field 152
Program and Daemons 18
Program Browser and Variables

Window (Part 2) 285
PVM Tasks and Configuration

Window 127
Resizing (and Sometimes Its

Consequences) 155
Resolving Ambiguous Function

Names Dialog Box 215
Root Widow: Group Page 225
Root Window 11
Root Window Attached Page

147
Root Window Groups Page 149
Root Window Log Page 72, 149
Root Window Showing Process

and Thread Status 86
Root Window Showing Remote

148
Root Window Unattached Page

148
Root Window: Unattached

Page 95
Root Window’s Group Page 14
Rotating and Querying 174
Sample OpenMP Debugging

Session 116
Sample Visualizer Data

Windows 173
Sample Visualizer Window 171
Select Directory Dialog Box 61
SHMEM Sample Session 129
Version 6.2 TotalView Users Guide 413

Index

F

Sliced UPC Array 131
Sorted Variable Window 330
Startup and Initialization

Sequence 44
Step 1: A Program Starts 29
Step 2: Forking a Process 30
Step 3: Exec’ing a Process 31
Step 5: Creating a Second

Version 31
Step 6: Creating a Remote

Process 32
Step 7: A Thread is Created 33
Stop Before Going Parallel

Question Dialog Box 136
Stopped Execution of

Compiled Expressions
360

Surface Options Dialog Box
178

The CLI and TotalView 194
Thread > Continuation Signal

Dialog Box 52, 234
Thread Objects Page on an

IBM AIX machine 318
Threads 20, 23
Three Dimensional Array

Sliced to Two Dimensions
167

Three Dimensional Surface
Visualizer Data Display
178

Toolbar 219
Toolbar with Pulldown 14
Tools > Call Tree Dialog Box

160
Tools > Evaluate Dialog Box

372, 373
Tools > Memory Usage

Window 161, 163
Tools > Watchpoint Dialog

Box 365
TotalView Debugging Session

Over a Serial Line 87
TotalView Visualizer

Connection 165
TotalView Visualizer

Relationships 164

Two Computers Working on
One Problem 19

Two Dimensional Surface
Visualizer Data Display
177

Two More Variable Windows 9
Two Variable Windows 9
Unattached Page 50
Undive/Dive Controls 214
Uniprocessor 18
UPC Laminated Variable 133
UPC Variable Window Showing

Nodes 131
User Threads and Service

Threads 24
User, Service, and Manager

Threads 24
Using an Expression to Change

a Value 297
Using Assembler 381
Variable Window 168
Variable Window for a Global

Variable 282
Variable Window for Area of

Memory 289
Variable Window for

small_array 323
Variable Window with Machine

Instructions 290
View > Lookup Function

Dialog Box 214, 215
View > Lookup Variable Dialog

Box 213
Visualizer Graph Data Window

175
Waiting to Complete Message

Box 372
Width Specifiers 252
Zooming, Rotating, About an

Axis 181
file

for start up 44
File > Close command 154, 290
File > Close command

(Visualizer) 172
File > Close Relatives command

154

File > Close Similar command
154, 290

File > Delete command
(Visualizer) 172

File > Directory command
(Visualizer) 172

File > Edit Source command 214,
218

File > Exit command 46
File > Exit command (Visualizer)

172
File > Exit Dialog Box figure 46
File > New Base Window

(Visualizer) 172
File > New Program command

42, 46, 49, 51, 53, 80, 84, 88
File > New Program Dialog Box

figure 47, 51
File > Options command

(Visualizer) 172, 174
File > Preferences 64

Action Points page 59, 64, 137
Bulk Launch page 65, 76, 79
Dynamic Libraries page 65
Fonts page 65
Formatting page 65
Launch Strings Page 74
Launch Strings page 65, 219
Options page 58
Parallel Page 135
Parallel page 65
Pointer Dive Page 65

File > Preferences Dialog Box:
Action Points Page figure 65

File > Preferences Dialog Box:
Bulk Launch Page figure 66

File > Preferences Dialog Box:
Dynamic Libraries Page
figure 67

File > Preferences Dialog Box:
Fonts Page figure 68

File > Preferences Dialog Box:
Launch Strings Page figure
66

File > Preferences Dialog Box:
Options Page figure 64
414 TotalView Users Guide Version 6.2

Index

G

File > Preferences Dialog Box:
Parallel Page figure 67

File > Preferences Dialog Box:
Pointer Dive Page figure 69

File > Preferences Launch Strings
Page figure 166

File > Preferences: Action Points
Page figure 348

File > Preferences: Bulk Launch
Page figure 77

File > Preferences: Formatting
Page figure 280

File > Preferences: Parallel Page
figure 136

File > Preferences: Server Launch
Strings Page figure 75

File > Save Pane command 157
File > Save Pane Dialog Box

figure 157
File > Search Path command 48,

51, 59, 61, 102
search order 59

File > Search Path Dialog Box
figure 60

File > Signals command 57
–file command-line option to

Visualizer 167, 180
files

.rhosts 100
hosts.equiv 100

fill assembler pseudo op 383
filter expression, matching 324
filtering 8

array data 324
array expressions 329
by comparison 325
conversion rules 325
example 326
IEEE values 326
in sorts 330
options 324
ranges of values 327

filters
$denorm 327
$inf 327
$nan 327
$nanq 327

$nans 327
$ninf 327
$pdenorm 327
$pinf 327

Find Again command 212
Find command 5, 212
finding

functions 213
source code 213, 215
source code for functions 213

first thread indicator of < 250
Five Processes and Their Groups

on Two Computers figure 29
Five Processors and Processor

Groups (Part 1) figure 27
Five Processors and Processor

Groups (Part 2)figure 28
float assembler pseudo op 383
focus

changing 248
pushing 249
restoring 249

for loop 371
Force window positions (disables

window manager placement
modes) check box 155

fork() 41, 223, 347
debugging programs that call

41
setting breakpoints with 348

fork_loop.tvd example program
197

Fortran
array bounds 299
arrays 300
common blocks 310
contained functions 312
data types, displaying 310
debugging modules 312
deferred shape array types 314
filter expression 329
in code fragment 354
in evaluation points 378
module data, displaying 310
modules 310, 312
pointer types 315

type strings supported by
TotalView 298

user defined types 314
Fortran 90 Pointer Value figure

316
Fortran 90 User-Defined Type

figure 314
Fortran Array with Inverse Order

and Limited Extent figure
322

Fortran Modules command 312
Fortran Modules Window figure

313
forward icon 154
four linked processors 21
4142 default port 79
Four Processor Computer figure

21
Four-Processor Computer

Networks figure 22
frame pointer 231
function visualization 159
functions

finding 213
locating 212
returning from 232

G
–g compiler option 40, 153
g width specifier 257, 263
generating a symbol table 40
global assembler pseudo op 383
global variables

changing 227
displaying 227
diving into 282, 283

Global Variables Window figure
287

Go command 5, 97, 101, 103,
105, 138, 225

GOI defined 239
goto statements 355
Graph command (Visualizer) 172
Graph Data Window 173
graph markers 174
Graph Options Dialog Box figure

175
Version 6.2 TotalView Users Guide 415

Index

H

Graph visualization menu 171
graph window, creating 172
Graph, in Directory Window 172
graphs

manipulating, in Visualizer 176
two dimensional 173

group
process 245
thread 245

Group > Attach Subset Dialog
Box figure 134

Group > Attach Subsets
command 134

Group > Control > Go command
221

Group > Delete command 113,
139, 234

Group > Edit command 254
Group > Edit Group command

275
Group > Edit Group figure 275
Group > Go command 101, 138,

226, 349
Group > Halt command 138, 229
Group > Hold command 222
Group > Next command 138
Group > Release command 222
Group > Restart command 235
Group > Run To command 138
Group > Share > Halt command

220
Group > Step command 138
Group > Workers > Go

commands 225
group aliases 203

limitations 204
group commands 138
group name 256
group number 256
group stepping 242
group syntax 255

group number 256
naming names 256
predefined groups 255

GROUP variable 262
group width specifier 251
group_indicator

defined 255
groups 122

see also processes
and barriers 13
behavior 242
changing 275
creating 29, 226
defined 25, 26
deleting 275
examining 223
holding processes 222
listing 149
named 275
overview 25
process 244
relationships 252
releasing processes 222
running 135
setting 261
starting 226
stopping 135
thread 244
updating 275

Groups page 14, 149, 224
GUI namespace 202

H
h held indicator 222
–h localhost option for HP MPI 98
half assembler pseudo op 383
Halt command 138, 220, 229
halt commands 220
halting

groups 220
processes 220
threads 220

handler routine 56
handling signals 56, 57, 123, 124
heap memory 162
held indicator 222
held operator 270
held processes

defined 350
hexadecimal address, specifying

in variable window 289
hi16 assembler operator 382
hi32 assembler operator 382

hold and release 221
$hold assembler pseudo op 382
$hold built-in function 376
Hold command 222
hold state 222
hold state, toggling 351
Hold Threads command 222
holding and advancing processes

206
holding threads 245
$holdprocess assembler pseudo

op 382
$holdprocess built-in function

376
$holdprocessall built-in function

376
$holdprocessstopall assembler

pseudo op 382
$holdstopall assembler pseudo

op 382
$holdstopall built-in function 376
$holdthread assembler pseudo

op 382
$holdthread built-in function 376
$holdthreadstop assembler

pseudo op 382
$holdthreadstop built-in function

376
$holdthreadstopall assembler

pseudo op 382
$holdthreadstopall built-in

function 376
$holdthreadstopprocess

assembler pseudo op 382
$holdthreadstopprocess built-in

function 376
hostname

abbreviated in Root Window
147

for tvdsvr 43
in square brackets 147

hosts.equiv file 100
how TotalView determines share

group 225
hung processes 49
416 TotalView Users Guide Version 6.2

Index

L

I
I state 56
IBM MPI 99
IBM SP machine 92, 93
idle state 56
Ignore mode warning 59
ignoring action points 344
implicitly defined process/thread

set 248
incomplete arena specifier 267
inconsistent widths 267
indicator 50
inf filter 327
infinite loop, see loop, infinite
infinity count array statistic 332
INFs 324
initial process 204
initialization search paths 44
initialization subdirectory 43
initializing an array slice 187
initializing debugging state 44
initializing the CLI 197
initializing TotalView 43
input files, setting 62
instructions

data type for 304
displaying 290, 307

int data type 299
int* data type 299
int[] data type 299
interactive CLI 193
interface to CLI 195
interpreted expressions 358

performance 359
interrupting commands 195
intersection operator 270
intrinsics, see built-in functions
inverting array order 321
inverting axis 175
invoking CLI program from shell

example 197
IP over the switch 99
iterating

over a list 268
over arenas 250

K
K state, unviewable 55
–KeepSendQueue command-line

option 112
kernel 55
killing processes when exiting 49
killing programs 234
–ksq command-line option 112

L
L lockstep group specifier 256,

257
labels, for machine instructions

307
Laminate > None command 333
Laminate > Process command

333
Laminate > Thread command

333
Laminate None command 333
Laminate Thread command. 119
Laminated Array and Structure

figure 335
laminated data view 12
Laminated Scalar Variable figure

334
Laminated UPC Variable Window

figure 132
Laminated Variable Window figure

12
laminating data pane 335
lamination

arrays and structures 334
data panes and Visualizer 169
diving in pane 334
editing a pane 335
variables 333

launch
configuring Visualizer 165
options for Visualizer 165
TotalView Visualizer from

command line 180
tvdsvr 73

Launch Strings Page 74, 84, 165,
219

launching processes 135
lcomm assembler pseudo op 383

LD_LIBRARY_PATH environment
variable 45

left margin area 150
left mouse button 145
libraries

dbfork 41
debugging SHMEM library

code 128
limiting array display 321
line most recently selected 233
line number area 146
line numbers 150
line numbers for specifying

blocks 295
LINES_PER_SCREEN variable 201
List and Vector Transformations

figure 279
lists of processes 146
lists with inconsistent widths 267
lists, iterating over 268
LM_LICENSE_FILE environment

variable 45
lo16 assembler operator 382
lo32 assembler operator 382
loading

core file 47
file into TotalView 42
new executables 46, 47
programs 42
remote executables 48

local hosts 43
locations, toggling breakpoints at

340
lockstep group 27, 240, 249

defined 26
L specifier 256
number of 254
overview 254

Log page 71, 149
long variable names, displaying

286
$long_branch assembler pseudo

op 382
Lookup Function command 125,

212, 213, 215, 216
Lookup Variable command 119,

212, 282, 286, 289, 312
Version 6.2 TotalView Users Guide 417

Index

M

specifying slides 322
loop infinite, see infinite loop
lower adjacent array statistic 332
lower bounds 299

non default 300
of array slices 320

lysm TotalView pseudo op 383

M
M state 55
machine instructions

data type 304
data type for 304
displaying 290, 307

Mail with Daemons figure 19
main() 125

stopping before entering 125
make_actions.tcl sample macro

190, 197
manager threads 23, 28
manual hold and release 221
Manual Launching of Debugger

Server figure 80
manually starting tvdsvr 84
markers, in graphs 174
master process, recreating slave

processes 139
master thread 115

OpenMP 115, 120
stack 117

matching processes 244
matching stack frames 333
maximum array statistic 332
mean array statistic 332
median array statistic 332
Memorize All command 155
Memorize command 155
memory

analyzing 161
data segment 162
displaying areas of 289
heap 162
stack 162
text segment 162
virtual stack 162

memory locations, changing
values of 296

Memory Statistics command 161
menus, context 146
mesh, drawing as 178
message passing deadlocks 109
Message Passing

Interface/Chameleon
Standard, see MPICH

Message Passing Toolkit 109
Message Queue command 108,

109
message queue display 104, 113
Message Queue Graph 108

diving 108
rearranging shape 108
updating 108

message queue graph 12
Message Queue Graph command

107
Message Queue Graph figure 13
Message Queue Graph window

figure 107
Message Queue Window

figure 110
Message Queue Window Showing

Pending Receive Operation
figure 111

message states 107
message tags, reserved 127
message-passing programs 137
messages

envelope information 112
operations 110
reserved tags 127
unexpected 112

messages from TotalView, saving
201

middle mouse button 145
middle mouse dive 156
minimum array statistic 332
missing TID 251
mixed state 55
mixing arena specifiers 268
modify watchpoints, see

watchpoints
modifying code behavior 355
module data definition 311
modules 310, 312

debugging, Fortran 312
displaying Fortran data 310

monitoring TotalView sessions 71
More Conditions figure 7
more processing 201
more prompt 201
mouse button

diving 145
left 145
middle 145
right 146
selecting 145

mouse buttons, using 145
MP_ADAPTER_USE environment

variable 99
MP_CPU_USE environment

variable 99
MP_EUIDEVELOP environment

variable 112
mpcc_r compilers 109
MPI

attaching to 105
attaching to HP job 98
attaching to running job 97
buffer diving 111
communicators 109
library state 109
on HP Alpha 96
on HP machines 97
on IBM 99
on SGI 104
process diving 111
processes, starting 103
starting on HP Alpha 96
starting on SGI 104
starting processes 97, 105
troubleshooting 113

MPI program
toolbar for 14

MPI_Init() 101, 109
breakpoints and timeouts 140

MPI_Iprobe() 112
MPI_Recv() 112
MPICH 92, 93

and SIGINT 113
and the TOTALVIEW

environment variable 93
418 TotalView Users Guide Version 6.2

Index

O

attach from TotalView 94
attaching to 94
ch_lfshmem device 92, 95
ch_mpl device 92
ch_p4 device 92, 95
ch_shmem device 95
ch_smem device 92
configuring 92
Debugging Tips 139
diving into process 94
MPICH/ch_p4 140
mpirun command 92, 93
naming processes 96
obtaining 92
P4 96
–p4pg files 96
starting TotalView using 92
using –debug 113

MPICH –tv command-line option
92

mpirun command 22, 92, 93, 98,
104, 139

examples 98
for HP MPI 98
options to TotalView through

139
passing options to 139

mpirun process 105
MPL_Init() 101

and breakpoints 101
mprun command 106
mpxlf_r compiler 109
mpxlf90_r compiler 109
MQD, see message queue display
multiple classes, resolving 215
Multiple indicator 334
multiple sessions 121
multiprocess debugging 11
multiprocess programming library

41
multiprocess programs

and signals 58
attaching to 52
compiling 40
process groups 223
setting and clearing

breakpoints 346

multiprocessing 22
multithreaded debugging 11
multithreaded signals 234

N
–n option, of rsh command 85
–n single process server launch

command 81
named groups 149, 275
named sets 275
names of processes in process

groups 224
namespaces 202

TV:: 202
TV::GUI:: 202

naming MPICH processes 96
naming rules

for control groups 224
for share groups 224

nan filter 327
nanq filter 327
NaNs 324, 326

array statistic 332
nans filter 327
navigating

source code 216
ndenorm filter 327
nested dive 153

defined 291
window 291, 292

Nested Dive figure 153
Nested Dives figure 292
nested stack frame

running to 245
New Base Window

in Data Window 172
New Base Window command

(Visualizer) 172
New Program command 42, 46,

49, 51, 53, 80, 84, 88
Next command 138, 227
"next" commands 231
Next Instruction command 227
$nid built-in variable 374
ninf filter 327
–no_stop_all command-line

option 139

node ID 374
nodes, attaching from to poe 102
nodes, detaching 135
None (laminate) command 333
None (sort) command 330
nonexistent operators 270
non-sequential program

execution 195

O
–O option 40
offsets, for machine instructions

307
$oldval built-in variable 374
omitting array stride 321
omitting components in creating

scope 296
omitting period in specifier 267
omitting width specifier 267
<opaque> data type 306
opaque type definitions 306
Open process window at

breakpoint check box 59
Open process window on signal

check box 58
OpenMP 113, 115

debugging 114
debugging applications 113
master thread 115, 118, 120
master thread stack context

117
on HP Alpha 115
private variables 117
runtime library 114
shared variables 117, 120
stack parent token 120
THREADPRIVATE common

blocks 118
THREADPRIVATE variables 119
threads 115
viewing shared variables 118
worker threads 115

OpenMP Shared Variable figure
118

OpenMP Stack Parent Token Line
figure 120
Version 6.2 TotalView Users Guide 419

Index

P

OpenMP THREADPRIVATE
Common Block Variable
figure 120

operators
- difference 270
& intersection 270
| union 270
breakpoint 270
error 270
existent 270
held 270
nonexistent 270
running 270
stopped 270
unheld 270
watchpoint 270

optimizations, compiling for 40
options

for visualize 180
in Data Window 172
–patch_area 361
–patch_area_length 361
–sb 370
-serial 88
setting 69
surface data display 179

Options > Auto Visualize
command (Visualizer) 172

Options command (Visualizer)
172, 174

Options Page 156
org assembler pseudo op 383
ORNL PVM, see PVM
"out" commands 232
out command

goal 232
outliers 332, 333
outlined routine 114, 119, 120
outlining, defined 114
output

assigning output to variable
200

from CLI 200
only last command executed

returned 200
printing 200
returning 200

when not displayed 200
output files, setting 62

P
p width specifier 257
p.t notation 250
p/t selector 247
p/t set browser 271
P/T Set Browser command 271
P/T Set Browser Window figure

272
P/T Set Browser Windows (Part 1)

figure 273
P/T Set Browser Windows (Part 2)

figure 274
P/T Set Control in the Process

Window figure 246
P/T Set Control in the Tools >

Evaluate Window figure 246
p/t sets

arguments to Tcl 248
arranged hierarchically 272
browser 271
defined 248
expressions 270
grouping 270
set of arenas 250
syntax 251
visualizing 271

p/t syntax
group syntax 255

p4 listener process 95
–p4pg files 96
–p4pg option 96
panes

action points list, see action
points list pane

source code, see source code
pane

stack frame, see stack frame
pane

stack trace, see stack trace
pane

panes, saving 157
parallel debugging tips 134
PARALLEL DO outlined routine

116, 117

Parallel Environment for AIX, see
PE

parallel environments
execution control 206

Parallel Page 135
parallel program, defined 204
parallel program, restarting 139
parallel region 115
parallel tasks, starting 101
Parallel Virtual Machine, see PVM
parallel_attach variable 137
parallel_stop variables 136
parsing comments example 190
passing arguments 42
passing default arguments 202
passing environment variables to

processes 70
Paste command 156
pasting 156
pasting between windows 156
pasting with middle mouse 145
patch space size, different than

1MB 362
patch space, allocating 360
–patch_area_base option 361
–patch_area_length option 361
patching

function calls 357
programs 357

PATH environment variable 48,
51, 59, 60

pathnames, setting in procgroup
file 96

PC Arrow Over a Stop Icon figure
346

PC icon 236
pdenorm filter 327
PE 99, 102, 109

adapter_use option 99
and slow processes 140
applications 99
cpu_use option 99
debugging tips 140
from command line 100
from poe 100
options to use 99
420 TotalView Users Guide Version 6.2

Index

P

switch-based communication
99

pending messages 108
pending receive operations 110,

111
pending send operations 110,

112
configuring for 112

pending unexpected messages
110

performance of interpreted, and
compiled expressions 359

performance of remote
debugging 73

–persist command-line option to
Visualizer 167, 180

$pid built-in variable 374
pid specifier, omitting 267
pid.tid to identify thread 150
pinf filter 327
pipe for Visualizer 164
piping data 157
Plant in share group check box

348, 356
poe

and mpirun 93
and TotalView 100
arguments 99
attaching to 102
interacting with 140
on IBM SP 94
placing on process list 103
required options to 99
running PE 100
TotalView acquires poe

processes 102
POI defined 239
point of execution for

multiprocess or
multithreaded program 152

pointer data 153
Pointer Dive page 287
Pointer to a Shared Variable

figure 133
pointers 153

as arrays 287
chasing 287

dereferencing 287
diving on 153
in Fortran 315
to arrays 299

pop_at_breakpoint variable 59
pop_on_error variable 58
popping a window 153
port 4142 79
–port command-line option 79
port number for tvdsvr 43
precision 280

changing 280
changing display 65

predefined data types 302
preference file 44
Preferences

Action Points Page 64
Bulk Launch Page 65, 76
Bulk Launch page 79
Dynamic Libraries Page 65
Fonts Page 65
Formatting Page 65
Launch Strings Page 65, 74
Options Page 58
Parallel Page 65
Pointer Dive Page 65

preferences, setting 69
preferences6.tvd file 44
primary thread

stepping failure 244
print statements, using 5
printing an array slice 187
printing in an eval point 5
private variables 115

in OpenMP 117
procedures

debugging over a serial line 86
displaying 306
displaying declared and

allocated arrays 306
process

detaching 52
holding 245
state 54
synchronization 245

Process > Create command 226
Process > Detach command 53

Process > Go command 97, 98,
101, 103, 105, 138, 226

Process > Halt command 138,
220, 229

Process > Hold command 222
Process > Hold Threads

command 222
Process > Next command 227
Process > Next Instruction

command 227
Process > Out command 242
Process > Release Threads

command 222
Process > Run To command 227,

241
Process > Startup command 43,

63
Process > Startup Parameters 62

Arguments Page 62
Environment Page 70
Standard I/O Page 63

Process > Startup Parameters
command 62, 63

Process > Startup Parameters
Dialog Box

Arguments Page figure 62
Process > Startup Parameters

Dialog Box: Environment
Page figure 71

Process > Startup Parameters
Dialog Box: Standard I/O
Page figure 63

Process > Step command 227
Process > Step Instruction

command 227
Process and Thread Labels in the

Process Window figure 55
Process and Thread Switching

Icons figure 12
process as dimension in

Visualizer 169
process barrier breakpoint

changes when clearing 354
changes when setting 354
defined 338
deleting 353
setting 351
Version 6.2 TotalView Users Guide 421

Index

P

process DUID 374
process groups 26, 244, 245, 253

behavior 261
behavior at goal 244
displaying 224
stepping 243
synchronizing 244

process ID 374
process numbers are unique 204
process states 55, 150
process states, attached 55
process stepping 243
process synchronization 137
process width specifier 251

omitting 267
Process Window 4, 150

displaying 152
host name in title 147
raising 58

Process Window figure 4, 151
Process Window Tag Field Area

figure 152
process/set threads

saving 252
process/thread identifier 204
process/thread notation 204
process/thread sets 205

as arguments 248
changing focus 248
default 248
examples 253
implicitly defined 248
inconsistent widths 268
structure of 251
target 248
widths inconsistent 268

process_id.thread_id 250
process_load_callbacks variable

45
$processduid built-in variable

374
processes

see also automatic process
acquisition

see also groups
acquiring 94, 95, 124

acquiring in PVM applications
122

acquisition in poe 102
apparently hung 138
attaching 49, 50, 147
attaching to 49, 50, 102, 126
barrier point behavior 354
behavior 243
breakpoints shared 347
call tree 160
cleanup 127
copy breakpoints from master

process 94
creating 61, 225, 227
creating by single-stepping

227
creating new 199
creating using Go 226
creating without starting 226
deleting 234
deleting related 235
detaching from 52
dimmed, in the Root Window

232
displaying data 153
diving into 50, 102
diving on 153
groups 223

examining 224
held defined 350
holding 221, 350, 376
hung 49
initial 204
killing while exiting 49
launching 135
list of 146
loading new executables 46
local 50
master restart 139
MPI 111
names 224
passing environment variables

to 70
refreshing process info 221
released 350
releasing 221, 350, 353
remote 50

restarting 235
single-stepping 241
slave, breakpoints in 94
spawned 204
starting 226
state 55
states 55
status of 54
stepping 13, 138, 243
stop all related 347
stopped 350
stopped at barrier point 354
stopping 220, 354
stopping all related 57
stopping and deleting 355
stopping intrinsic 376
stopping spawned 94
switching between 11
synchronizing 207, 244
terminating 199
types of process groups 223
when stopped 243

process-level stepping 138
processors and threads 22
procgroup file 96

using same absolute path
names 96

Program and Daemons figure 18
Program Browser and Variables

Window (Part 2) figure 285
program control groups

defined 254
naming 224

program counter (PC) 50, 151,
152

arrow icon for PC 152
indicator 150
setting 236
setting program counter 236
setting to a stopped thread

237
program execution

advancing 206
controlling 206

program state, changing 195
program visualization 159
programming TotalView 14
422 TotalView Users Guide Version 6.2

Index

R

programs
compiling 3, 40
compiling using –g 40
correcting 358
deleting 234
killing 234
loading by process ID 47
not compiled with –g 40
patching 6, 357
restarting 235

prompt and width specifier 259
PROMPT variable 203
Properties command 140, 338,

343, 346, 351, 356
properties, of action points 5
prototypes for temp files 77
prun command 103
pthread ID 205
pthreads, see threads
pushing focus 249
PVM

acquiring processes 122
attaching procedure 126
attaching to tasks 126
automatic process acquisition

124
cleanup of tvdsvr 127
creating symbolic link to

tvdsvr 122
daemons 127
debugging 121
message tags 127
multiple instances not allowed

by single user 121
multiple sessions 121
running with DPVM 122
same architecture 126
search path 123
starting actions 124
tasker 124
tasker event 125
tasks 121, 122
TotalView as tasker 121
TotalView limitations 121
tvdsvr 125
Update Command 126

pvm command 122, 124

PVM groups, unrelated to process
groups 122

PVM Tasks and Configuration
Window figure 127

PVM Tasks command 126
pvm_joingroup() 127
pvm_spawn() 122, 125
pvmgs process 122, 127

terminated 127

Q
QSW RMS applications 103

attaching to 104
debugging 103
starting 103

quad assembler pseudo op 383
Quadrics RMS 103
quartiles array statistic 332
queue state 107
quitting TotalView 46

R
R state 55, 56
raising process window 58
rank for Visualizer 165
ranks 107
recursive functions 232

single-stepping 231
redirecting

stdin 63
stdout 63

redive icon 154, 291
registers

editing 238
interpreting 237

relatives, attaching to 52
Release command 222
release state 222
Release Threads command 222
reloading

breakpoints 101
remembering window positions

155
–remote command-line option 43
Remote Debug Server Launch

preferences 74
remote debugging 73

see also PVM applications
launching tvdsvr 73
performance 73

remote executables, loading 48
remote host

debugging on 48
remote hosts 43
remote login 100
–remote option 43, 48
remote shell command, changing

84
removing breakpoints 146
remsh command 84

used in server launches 80
replacing default arguments 202
researching directories 61
reserved message tags 127
Reset command 214, 216
Reset command (Visualizer) 179
resetting command-line

arguments 62
resetting the program counter

236
Resizing (and Sometimes Its

Consequences) figure 155
Resolving Ambiguous Function

Names Dialog Box figure 215
resolving ambiguous names 214
resolving multiple classes 215
resolving multiple static functions

214
Restart Checkpoint command

235
Restart command 235
restarting

parallel programs 139
program execution 198
programs 235

restoring focus 249
results, assigning output to

variables 200
resuming

executing thread 236
execution 221, 226
processes with a signal 233

retaining the dive stack 154
Version 6.2 TotalView Users Guide 423

Index

S

returning to original source
location 214

reusing windows 153
.rhosts file 84
right angle bracket (>) 153
right arrow is program counter 50
right mouse button 146
RMS applications 103

attaching to 104
starting 103

Root Window 11, 146
Attached Page 103, 146, 232,

233
dimmed information 232
Groups page 14, 149, 224
Log page 71, 149
selecting a process 153
starting CLI from 196
state indicator 55
Unattached Page 11, 49, 50,

55, 56, 102, 147
Unattached page 50, 94

Root Window Attached Page
figure 147

Root Window figure 11
Root Window Groups Page figure

149
Root Window Log Page figure 72,

149
Root Window Showing Process

and Thread Status figure 86
Root Window Showing Remote

figure 148
Root Window Unattached Page

figure 148
Root Window: Group Page figure

225
Root Window: Unattached Page

figure 95
Root Window’s Group Page figure

14
Rotating and Querying figure 174
rotating surface 179
rounding modes 238
routine visualization 159
routines, diving on 153
routines, selecting 150

rsh command 84, 100
rules for scoping 295
Run To command 5, 138
"run to" commands 231, 244
running CLI commands 44
running groups 135
running operator 270
running state 55

S
–s command-line option 44, 197
S share group specifier 255
S state 56
S width specifier 257
Sample OpenMP Debugging

Session figure 116
sample programs

make_actions.tcl 197
Sample Visualizer Data Windows

figure 173
Sample Visualizer Windows figure

171
sane command argument 196
Satisfaction group items

pulldown 353
satisfaction set 353
satisfied barrier 353
Save All (action points) command

370
Save All command 370
Save Pane command 157
saved action points 45
saving

action points 370
TotalView messages 201
window contents 157

–sb option 370
scaling a surface 179
scaling data window 176
scope pulldown 246
scoping 294

ambiguous 296
as a tree 295
omitting components 296
rules 295

scrolling 145
output 201

undoing 216
Search Path command 48, 51, 59,

61, 102
search order 59

search paths
for initialization 44
order 59
setting 59, 123

search_path variable 61
–search_port command-line

option 79
searching 212

case-sensitive 212
for source code 215
functions 213
locating closest match 212
source code 213
wrapping to front or back 212

Searching, see Edit > Find, View >
Lookup Function, View
Lookup Variable

searching, variable not found 212
segments

data 162
text 162

select button 145
Select Directory Dialog Box figure

61
selected line, running to 245
selecting

different stack frame 150
routines 150
source code, by line 237
source line 227
text 156

sending signals to program 59
–serial command-line option 87
serial line

baud rate 88
debugging over a 86
radio button 89
starting TotalView 88

–serial option 88
server launch 74

command 75
enabling 75
replacement character %C 80
424 TotalView Users Guide Version 6.2

Index

S

server on each processor 19
–server option 79

not secure 79
server_launch_enabled variable

75, 79, 84
server_launch_string variable 75
server_launch_timeout variable

76
service threads 23, 28
Set Barrier command 351
set expressions 270
set indicator, uses dot 250, 271
Set PC command 237
Set Signal Handling Mode

command 123
–set_pw command-line option 84
–set_pw single process server

launch command 81
–set_pws bulk server launch

command 82
setting

barrier breakpoint 351
breakpoints 101, 146, 189,

241, 340, 346
breakpoints while running 340
command arguments 62
command line arguments 61,

62
environment variables 70
evaluation points 146, 356
groups 261
input and output files 62
options 69
preferences 69
search paths 59, 123
thread specific breakpoints

374
setting up, debug session 39
setting up, parallel debug session

91
setting up, remote debug session

73
setting X resources 69
SGROUP variable 262
shading graph 178
shape arrays, deferred types 314
Share > Halt command 220

share groups 26, 223, 232, 254,
353

defined 26
determining 225
determining members of 225
discussion 223
naming 224
overview 254
S specifier 255

SHARE_ACTION_POINT variable
343, 347, 348

shared library, specifying name in
scope 295

shared memory library code, see
SHMEM library code
debugging

shared variables 115
in OpenMP 117
OpenMP 117, 120
procedure for displaying 117

sharing action points 348
shell, example of invoking CLI

program 197
SHLIB_PATH environment

variable 45
SHMEM library code debugging

128
SHMEM Sample Session figure

129
showing areas of memory 289
SIGALRM 140
SIGFPE errors (on SGI) 57
SIGINT signal 113
signal handling mode 57
signal/resignal loop 59
–signalHandlingMode option 56
signals

affected by hardware registers
57

clearing 234
continuing execution with 233
default handling behavior 57
discarding 59
error option 59
handler routine 56
handling 56

handling in PVM applications
123, 124

handling in TotalView 56
handling mode 57
ignore option 59
resend option 59
sending continuation signal

233
SIGALRM 140
SIGTERM 123, 124
stop option 59
stops all related processes 57
that caused core dump 53

Signals command 57
SIGSTOP

used by TotalView 57
when detaching 52

SIGTERM signal 123, 124
stops process 123
terminates threads on SGI 115

SIGTRAP, used by TotalView 57
single process server launch 73,

74, 80
single process server launch

command
%D 81
%L 81
%P 81
%R 81
%verbosity 81
–callback_option 81
–n 81
–set_pw 81
–working_directory 81

single-stepping 229, 241
commands 229
in a nested stack frame 245
into function calls 230
not allowed for a parallel

region 115
on primary thread only 242
operating system

dependencies 231, 234
over function calls 230
recursive functions 231

skipping elements 321
slash in group specifier 256
Version 6.2 TotalView Users Guide 425

Index

S

sleeping state 56
Sliced UPC Array figure 131
slices 8, 323

defining 320
descriptions 322
displaying one element 323
examples 320, 321
in sorts 330
lower bound 320
of arrays 319
operations using 315
stride elements 320
upper bound 320
with the variable command

322
smart stepping, defined 242
SMP machines 92
sockets 86
Sort > Ascending command 330
Sort > Descending command

330
Sort > None command 330
Sorted Variable Window figure

330
sorting array data 330
Source As > Assembler 216
Source As > Both 216, 237
Source As > Both command 237
Source As > Source 216
source code

examining 216
finding 213, 215
navigating 216

Source command 216
source file, specifying name in

scope 296
source lines

ambiguous 227
editing 218
searching 227
selecting 227

Source Pane 150
source-level breakpoints 340
space allocation

dynamic 360
static 360, 361

spawned processes 204

stopping 94
specifier combinations 257
specifiers

and dfocus 258
and prompt changes 259
examples 257

specifying groups 255
specifying search directories 61
splitting up work 19
stack

master thread 117
trace, examining 284
unwinding 237

stack context of the OpenMP
master thread 117

stack frame 286
current 216
examining 284
matching 333
pane 150
selecting different 150

Stack Frame Pane 6, 150, 290
stack memory 162
stack parent token 120

diving 120
Stack Trace Pane 150, 152

displaying source 153
stack virtual memory 162
standard deviation array statistic

332
Standard I/O Page 63
standard input, and launching

tvdsvr 85
start(), stopping within 125
start_pes() SHMEM command

128
starting

CLI 41, 42, 196
groups 226
parallel tasks 101
TotalView 4, 41, 42, 53, 100
tvdsvr 43, 73, 79, 125
tvdsvr manually 84

starting program under CLI
control 198

Startup and Initialization
Sequence figure 44

Startup command 43
startup file 44
Startup Parameters

Environment page 70
Startup Parameters command 62,

63
Arguments Page 62
Standard I/O Page 63

state characters 56
states

and status 55
initializing 44
of processes and threads 55
process and thread 55
unattached process 56

static constructor code 227
static functions, resolving

multiple 214
static patch space allocation 360,

361
statically linked, stopping in

start() 125
statistics for arrays 331
status

and state 55
of processes 54
of threads 54

status registers
examining 237
interpreting 237

stdin, redirect to file 62
stdout, redirect to file 62
Step 1: A Program Starts figure 29
Step 2: Forking a Process figure

30
Step 3: Exec’ing a Process figure

31
Step 5: Creating a Second Version

figure 31
Step 6: Creating a Remote

Process figure 32
Step 7: A Thread is Created figure

33
Step command 138, 227
"step" commands 230
step command 4
Step Instruction command 227
426 TotalView Users Guide Version 6.2

Index

T

stepping
see also single-stepping
apparently hung 138
at process width 243
at thread width 244
goals 243
into 230
multiple statements on a line

230
over 230
primary thread can fail 244
process group 243
processes 138
Run (to selection) Group

command 138
smart 242
target program 206
thread group 243
threads 268
using a numeric argument in

CLI 230
stepping a group 242
stepping a process 243
stepping commands 227
stepping processes and threads

13
STL variables, displaying 286
$stop assembler pseudo op 382
Stop Before Going Parallel

Question Dialog Box figure
136

$stop built-in function 376
Stop control group on error

check box 59
Stop control group on error

signal option 57
stop execution 5
STOP icon 146, 241, 340, 345

for breakpoints 146, 340
stop, defined in a multiprocess

environment 206
STOP_ALL variable 343, 347
$stopall built-in function 376
Stopped Execution of Compiled

Expressions figure 360
stopped operator 270
stopped process 354

stopped state 55
unattached process 56

stopped thread 28
stopping

all related processes 57
groups 135
processes 220, 355
spawned processes 94
threads 220

$stopprocess assembler pseudo
op 382

$stopprocess built-in function
376

$stopthread built-in function 376
stride 320

default value of 321
elements 320
in array slices 320
omitting 321

string assembler pseudo op 383
<string> data type 304
structs

see also structures
defined using typedefs 301
how displayed 300

structures 300
see also structs
editing types 298
laminating 334

stty sane command 196
subroutines, displaying 153
suffixes

of processes in process groups
224

sum array statistic 332
Suppress All command 344
suppressing action points 344
surface

coloring 179
display 179
in directory window 172
rotating 179
scaling 179
translating 180
zooming 180

Surface command (Visualizer) 172
Surface Data Window 177

display 177
Surface Options Dialog Box figure

178
Surface visualization window 171
surface window, creating 172
suspended windows 372
switch-based communication

for PE 99
switch-based communications 99
symbol lookup 295

and context 295
symbol name representation 294
symbol scoping, defined 295
symbol specification, omitting

components 296
symbol table debugging

information 40
symbolic addresses, displaying

assembler as 217
Symbolically command 217
synchronizing execution 221
synchronizing processes 207,

244, 245
system PID 205
system TID 205
system variables, see CLI variables
systid 150, 205
$systid built-in variable 374

T
T state 55, 56
t width specifier 257
tag field 345
tag field area 150
target process/thread set 206,

248
target program

stepping 206
target, changing 249
tasker event 125
tasks

attaching to 126
diving into 126
PVM 121
starting 101

Tcl
and CLI 193
Version 6.2 TotalView Users Guide 427

Index

T

and the CLI 14
books for learning xviii
CLI and thread lists 194
version based upon 193

Tcl and CLI relationship 195
TCP/IP address, used when

starting 43
TCP/IP sockets 86
temp file prototypes 77
terminating processes 199
testing when a value changes 363
text

editing 156
locating closest match 212
saving window contents 157
selecting 156

text assembler pseudo op 383
text editor, default 214
text segment 162
text segment memory 162
third party visualizer 164
Thread > Continuation Signal

command 52, 233
Thread > Continuation Signal

Dialog Box figure 52, 234
Thread > Go command 226
Thread > Hold command 222
Thread > Set PC command 237
thread as dimension in Visualizer

169
thread group 245

stepping 243
thread groups 26, 244, 253

behavior 261
behavior at goal 244

thread ID 150, 205
system 374
TotalView 374

thread local storage 118
variables stored in different

locations 118
thread numbers are unique 204
Thread Objects command 317
Thread Objects Page on an IBM

AIX machine figure 318
thread objects, displaying 317
Thread of Interest 225

thread of interest 250, 252
defined 220, 250

Thread Pane 150
thread state 55
thread stepping 268

platforms where allowed 244
thread width specifier 251

omitting 267
THREADPRIVATE common block

procedure for viewing
variables in 119

THREADPRIVATE variables 119
threads

call tree 160
creating 20
dimmed, in the Root Window

232
displaying source 153
diving on 150, 153
finding window for 150
holding 221, 245, 352
ID format 150
listing 150
manager 23
not available on all systems 26
opening window for 150
releasing 221, 350, 352
resuming executing 236
service 23
setting breakpoints in 374
single-stepping 241
stack trace 150
state 54
states 55
status of 54
stepping 13
stopping 220
switching between 11
systid 150
tid 150
user 23
workers 23, 25

Threads figure 20, 23
threads model 20
thread-specific breakpoints 374
Three Dimensional Array Sliced to

Two Dimensions figure 167

Three Dimensional Surface
Visualizer Data Display figure
178

tid 150, 205
$tid built-in variable 374
TID missing in arena 251
timeouts

avoid unwanted 140
during initialization 101
for connection 76
TotalView setting 100

TOI defined 220
again 239

Tool > P/T Set Browser command
271

toolbar
controls 246
using 220, 246
width controls 246

Toolbar figure 219
Toolbar with Pulldown figure 14
Tools > Call Tree command 159
Tools > Call Tree Dialog Box

figure 160
Tools > Command Line

command 42, 196
Tools > Create Checkpoint

command 235
Tools > Evaluate command 165,

170, 371, 373
Tools > Evaluate Dialog Box

figure 372, 373
Tools > Fortran Modules

command 312
Tools > Memory Statistics

command 161
Tools > Memory Usage Window

figure 161, 163
Tools > Message Queue

command 108, 109
Tools > Message Queue Graph

command 107
Tools > PVM Tasks command

126
Tools > Restart Checkpoint

command 235
Tools > Statistics command 331
428 TotalView Users Guide Version 6.2

Index

T

Tools > Thread Objects
command 317

Tools > Variable Browser
command 283

Tools > Visualize command 10,
169, 336

Tools > Watchpoint command
10, 365, 368

Tools > Watchpoint Dialog Box
figure 365

TotalView
and MPICH 92
as PVM tasker 121
core files 41
initializing 43
interactions with Visualizer 164
programming 14
quitting 46
relationship to CLI 194
starting 4, 41, 42, 53, 100
starting on remote hosts 43
starting the CLI within 196
Visualizer configuration 165

TotalView Assembler Language
380

TotalView assembler operators
hi16 382
hi32 382
lo16 382
lo32 382

TotalView assembler pseudo ops
$debug 382
$hold 382
$holdprocess 382
$holdprocessstopall 382
$holdstopall 382
$holdthread 382
$holdthreadstop 382
$holdthreadstopall 382
$holdthreadstopprocess 382
$long_branch 382
$stop 382
$stopall 382
$stopprocess 382
$stopthread 382
align 382
ascii 382

asciz 382
bss 383
byte 383
comm 383
data 383
def 383
double 383
equiv 383
fill 383
float 383
global 383
half 383
lcomm 383
lysm 383
org 383
quad 383
string 383
text 383
word 383
zero 383

totalview command 41, 44, 53,
96, 100, 104

for HP MPI 98
starting on a serial line 88

TotalView data types
<address> 302
<char> 302
<character> 302
<code> 302, 304
<complex*16> 302
<complex*8> 302
<complex> 302
<double precision> 302
<double> 302
<extended> 303
<float> 303
<int> 303
<integer*1> 303
<integer*2> 303
<integer*4> 303
<integer*8> 303
<integer> 303
<logical*1> 303
<logical*2> 303
<logical*4> 303
<logical*8> 303
<logical> 303

<long long> 303
<long> 303
<opaque> 306
<real* 16> 303
<real* 4> 303
<real* 8> 303
<real> 303
<short> 303
<string> 303, 304
<void> 303, 304

TotalView Debugger Server, see
tvdsvr

TotalView Debugging Session
Over a Serial Line figure 87

TOTALVIEW environment variable
93, 139

TotalView program
quitting 46

totalview subdirectory, see
.totalview subdirectory

TotalView Visualizer Connection
figure 165

TotalView Visualizer Relationships
figure 164

TotalView Visualizer
see Visualizer

TotalView windows
action point List pane 152
editing cursor 156

totalviewcli command 41, 42, 44,
53, 104, 196, 198

–remote 43
starting on a serial line 88

translating a surface 180
translating data window 176
transposing axis 175
TRAP_FPE environment variable

on SGI 57
troubleshooting xxii

MPI 113
–tv command-line option 92
TV:: namespace 202
TV::GUI:: namespace 202
TVD.breakpoints file 370
TVDB_patch_base_address

object 361
tvdb_patch_space.s 362
Version 6.2 TotalView Users Guide 429

Index

U

tvdrc file, see .tvdrc initialization
file

tvdsvr 43, 48, 73, 74, 76, 86, 87,
359

attaching to 126
–callback command-line

option 84
cleanup by PVM 127
editing command line for poe

102
fails in MPI environment 113
launch problems 76, 78
launching 80
launching, arguments 85
manually starting 84
–port command-line option 79
–search_port command-line

option 79
–server command-line option

79
–set_pw command-line option

84
starting 79
starting for serial line 87
starting manually 79, 84
symbolic link from PVM

directory 122
with PVM 125

tvdsvr command
starting 73
timeout while launching 76, 78
use with PVM applications 122

TVDSVRLAUNCHCMD
environment variable 80

Two Computers Working on One
Problem figure 19

Two Dimensional Surface
Visualizer Data Display figure
177

Two More Variable Window figure
9

Two Variable Windows figure 9
two-dimensional graphs 173
type casting 297

examples 304
type strings

built-in 302

editing 297
for opaque types 306
supported for Fortran 298

type transformation variable 280
typedefs

defining structs 301
how displayed 300

types
user defined type 314

types supported for C language
298

U
UDT 314
UDWP, see watchpoints
UID, UNIX 79
Unattached Page 11, 49, 55, 56,

94, 102, 147
Unattached page 50
Unattached Page figure 50
unattached process states 56

summary 56
undive icon 154, 214, 291
Undive/Dive Controls figure 214
undiving, from windows 292
unexpected messages 108, 112
unheld operator 270
union operator 270
unions 300

how displayed 301
Uniprocessor figure 18
unique process numbers 204
unique thread numbers 204
unsuppressing action points 344
unwinding the stack 237
UPC Laminated Variable figure

133
UPC Variable Window Showing

Nodes figure 131
Update command 103, 221, 233
updating groups 275
updating visualization displays

169
upper adjacent array statistic 333
upper bounds 299

of array slices 320
USEd information 312

user defined data type 314
user mode 23
user threads 23
User Threads and Service Threads

figure 24
User, Service, and Manager

Threads figure 24
Using an Expression to Change a

Value figure 297
Using Assembler figure 381

V
value field 371
values

changing 156
editing 7

Variable Browser command 283
variable scoping 294
Variable Window

closing 290
displaying 281
duplicating 292
in recursion, manually refocus

286
laminated display 333
stale in pane header 286
tracking addresses 286
updates to 286

Variable Window figure 168
Variable Window for a Global

Variable figure 282
Variable Window for Area of

Memory figure 289
Variable Window for small_array

figure 323
Variable Window with Machine

Instructions figure 290
variables

assigning p/t set to 252
at different addresses 334
CGROUP 254, 262
changing the value 296
changing values of 296
data format 281
display width 280
displaying all globals 283
displaying contents 153
430 TotalView Users Guide Version 6.2

Index

V

displaying long names 286
diving 153
GROUP 262
in modules 312
in Stack Frame Pane 7
intrinsic, see built-in functions
laminated display 333
locating 212
precision 280
previewing size and precision

281
setting command output to

200
SGROUP 262
stored in different locations

118
ttf 280
watching for value changes 10
WGROUP 262

–verbosity bulk server launch
command 82

verbosity level 105
–verbosity single process server

launch command 81
View > Assembler > By Address

command 217
View > Assembler > Symbolically

command 217
View > Dive Anew command 283
View > Dive In All command 293
View > Dive Thread command

317
View > Dive Thread New

command 317
View > Graph command 171
View > Graph command

(Visualizer) 172
View > Laminate > None

command 333
View > Laminate > Process

command 333
View > Laminate > Thread

command 333
View > Laminate Thread

command 119

View > Lookup Function
command 125, 212, 213,
215, 216

View > Lookup Function Dialog
Box figure 214, 215

View > Lookup Variable
command 119, 212, 282,
286, 289, 312

specifying slices 322
View > Lookup Variable Dialog

Box figure 213
View > Reset command 214, 216
View > Reset command

(Visualizer) 176, 179
View > Sort > Ascending

command 330
View > Sort > Descending

command 330
View > Sort > None command

330
View > Source As > Assembler

command 216
View > Source As > Both

command 216, 237
View > Source As > Source

command 216
View > Surface command

(Visualizer) 171, 172
View > Variable command 117
viewing assembler 217
virtual stack memory 162
visualization

deleting a dataset 172
translating a surface 180
zooming a surface 180

$visualize 377
Visualize command 10, 167, 169,

336
visualize command 180
visualize, see $visualize
Visualizer 170, 335

autolaunch options, changing
165

choosing method for
displaying data 168

configuring 165
configuring launch 165

creating graph window 172
creating surface window 172
data sets to visualize 167
data types 167
data window 170, 172
data window manipulation

commands 176
dataset defined 167
dataset numeric identifier 167
dataset parameters 179
deleting datasets 172
dimensions 169
directory window 170, 171
display not automatically

updated 169
exiting from 172
–file command-line option

167, 180
graphs, display 173, 174
graphs, manipulating 176
interactions with TotalView

164
laminated data panes 169
launch command, changing

shell 167
launch from command line

180
launch options 165
method 168
new or existing dataset 167
number of arrays 167
–persist command-line option

167, 180
pipe 164
rank 165
relationship to TotalView 164
rotating 179
scaling a surface 179
selecting datasets 171
shell launch command 166
slices 167
surface data display options

179
Surface Data Window 177
third party 164
using casts 170
windows, types of 170
Version 6.2 TotalView Users Guide 431

Index

W

visualizer
closing connection to 166
customized command for 165

Visualizer Graph Data Window
figure 175

visualizing
data 163, 172
data sets from a file 180
from variable window 168
in expressions using $visualize

169
<void> data type 304

W
W state 55
W width specifier 257
W workers group specifiers 256
Waiting for Command to

Complete window 138
Waiting to Complete Message

Box figure 372
warn_step_throw variable 58
watching memory 366
Watchpoint command 10, 365,

368
watchpoint operator 270
Watchpoint Properties dialog box

366
watchpoint state 55
watchpoints 10, 363

$newval 368
$oldval 368
alignment 369
conditional 363, 368
copying data 368
creating 365
defined 207, 338
disabling 366
diving into 366
enabling 366
evaluated, not compiled 370
evaluating an expression 363
example of triggering when

value goes negative 369

length compared to $oldval or
$newval 369

lists of 152
lowest address triggered 367
modifying a memory location

363
monitoring adjacent locations

367
multiple 367
not saved 370
PC position 367
platform differences 364
problem with stack variables

366
supported platforms 363
testing a threshold 363
testing when a value changes

363
triggering 363, 367
watching memory 366

WGROUP variable 262
When a job goes parallel or calls

exec() radio buttons 136
When a job goes parallel radio

buttons 137
When Done, Stop radio buttons

352
When Hit, Stop radio buttons 352
width pulldown 246
width relationships 252
width specifier 250

omitting 267
Width Specifiers figure 252
Window > Duplicate Base

command 154, 292
Window > Duplicate command

154, 292
Window > Memorize All

command 155
Window > Memorize command

155
Window > Update command 103,

221, 233
window contents, saving 157
window, copying 154

windows 290
closing 154, 290
copying between 156
data 172
Data Window (Visualizer) 173
Directory Window 171
event log 71
graph data 173
pasting between 156
popping 153
resizing 155
Surface Data Window 177
suspended 372

Windows > Update command
(PVM) 126

word assembler pseudo op 383
worker threads 23, 115
workers group 27, 245

defined 26
overview 254

workers group specifier 256
working directory 61
working independently 18
–working_directory bulk server

launch command 82
–working_directory single process

server launch command 81

X
X resources setting 69
Xdefaults file, see .Xdefaults file
xterm, launching tvdsvr from 85

Z
Z state 56
zero assembler pseudo op 383
zero count array statistic 333
zombie state 56
zone coloring 179
zone maps 177
zooming a surface 180
zooming data window 176
Zooming, Rotating, About an Axis

figure 181
432 TotalView Users Guide Version 6.2

	Book Overview
	Contents
	About This Book
	How to Use This Book
	Using the CLI
	Audience
	Conventions
	Note
	TotalView Documentation
	Contacting Us

	Discovering TotalView
	First Steps
	Starting TotalView
	What About Print Statements?
	Examining Data

	Debugging Multiprocess and Multithreaded Programs
	Supporting Multiprocess and Multithreaded Programs

	Using Groups and Barriers
	Introducing the CLI
	What’s Next

	Understanding Threads, Processes, and Groups
	A Couple of Processes
	Threads
	Complicated Programming Models
	Kinds of Threads
	Organizing Chaos
	Creating Groups
	Simplifying What You’re Debugging

	Setting Up a Debugging Session
	Compiling Programs
	File Extensions

	Starting TotalView
	Initializing TotalView

	Exiting from TotalView
	Loading Executables
	Loading Remote Executables

	Attaching to Processes
	Attaching Using the Unattached Page
	Attaching Using File > New Program and dattach

	Detaching from Processes
	Examining Core Files
	Viewing Process and Thread State
	Attached Process States
	Unattached Process States

	Handling Signals
	Setting Search Paths
	Setting Command Arguments
	Setting Input and Output Files
	Setting Preferences
	Setting Preferences, Options, and X Resources

	Setting Environment Variables
	Monitoring TotalView Sessions

	Setting Up Remote Debugging Sessions
	Starting the TotalView Debugger Server
	Setting Single-Process Server Launch Options
	Setting Bulk Launch Window Options
	Starting the Debugger Server Manually
	Using the Single-Process Server Launch Command
	Bulk Server Launch on an SGI MIPs Machine
	Bulk Server Launch on an IBM RS/6000 AIX Machine
	Bulk Server Launch on an HP Alpha Machine
	Disabling Autolaunch
	Changing the Remote Shell Command
	Changing the Arguments
	Autolaunch Sequence

	Debugging Over a Serial Line
	Starting the TotalView Debugger Server
	Starting TotalView on a Serial Line
	Using the New Program Window

	Setting Up Parallel Debugging Sessions
	Debugging MPICH Applications
	Starting TotalView on an MPICH Job
	Attaching to an MPICH Job
	MPICH P4 procgroup Files

	Debugging HP Alpha MPI Applications
	Starting TotalView on a HP Alpha MPI Job
	Attaching to a HP Alpha MPI Job

	Debugging HP MPI Applications
	Starting TotalView on an HP MPI Job
	Attaching to an HP MPI Job

	Debugging IBM MPI (PE) Applications
	Preparing to Debug a PE Application
	Using Switch-Based Communication
	Performing Remote Logins
	Setting Timeouts

	Starting TotalView on a PE Job
	Setting Breakpoints
	Starting Parallel Tasks
	Attaching to a PE Job
	Attaching from a Node Running poe
	Attaching from a Node Not Running poe

	Debugging QSW RMS Applications
	Starting TotalView on an RMS Job
	Attaching to an RMS Job

	Debugging SGI MPI Applications
	Starting TotalView on a SGI MPI Job
	Attaching to an SGI MPI Job

	Debugging Sun MPI Applications
	Attaching to a Sun MPI Job

	Displaying the Message Queue Graph
	Displaying the Message Queue
	Message Queue Display Overview
	Using Message Operations
	Diving on MPI Processes
	Diving on MPI Buffers
	Pending Receive Operations
	Unexpected Messages
	Pending Send Operations

	MPI Debugging Troubleshooting

	Debugging OpenMP Applications
	Debugging OpenMP Programs
	TotalView OpenMP Features
	OpenMP Platform Differences

	OpenMP Private and Shared Variables
	OpenMP THREADPRIVATE Common Blocks
	OpenMP Stack Parent Token Line

	Debugging PVM and DPVM Applications
	Supporting Multiple Sessions
	Setting Up ORNL PVM Debugging
	Starting an ORNL PVM Session
	Starting a DPVM Session
	Automatically Acquiring PVM/DPVM Processes
	Attaching to PVM/DPVM Tasks
	Reserved Message Tags
	Cleanup of Processes

	Debugging Shared Memory (SHMEM) Code
	Debugging UPC Programs
	Invoking TotalView
	Viewing Shared Objects
	Pointer to Shared

	Parallel Debugging Tips
	Attaching to Processes
	General Parallel Debugging Tips
	MPICH Debugging Tips
	IBM PE Debugging Tips

	Using TotalView’s Windows
	Using the Mouse Buttons
	Using the Root Window
	Using the Process Window
	Diving into Objects
	Resizing and Positioning Windows and Dialog Boxes
	Editing Text
	Saving the Contents of Windows

	Visualizing Programs and Data
	Displaying Your Program’s Call Tree
	Displaying Memory Statistics
	Using the Visualizer to Display Array Data
	How the Visualizer Works
	Configuring TotalView to Launch the Visualizer
	Visualizer Launch Command
	Data Types That TotalView Can Visualize
	Viewing Data

	Visualizing Data Manually
	Visualizing Data Programmatically
	Using the Visualizer
	Directory Window
	Data Windows

	Using the Graph Window
	Displaying Graphs
	Manipulating Graphs

	Using the Surface Window
	Displaying Surface Data
	Manipulating Surface Data

	Launching the Visualizer from the Command Line

	Seeing the CLI at Work
	Setting the EXECUTABLE_PATH State Variable
	Initializing an Array Slice
	Printing an Array Slice
	Writing an Array Variable to a File
	Automatically Setting Breakpoints

	Using the CLI
	Tcl and the CLI
	The CLI and TotalView
	The CLI Interface

	Starting the CLI
	Startup Example
	Starting Your Program

	CLI Output
	“more” Processing

	Command Arguments
	Using Namespaces
	Command and Prompt Formats
	Built-In Aliases and Group Aliases
	Effects of Parallelism on TotalView and CLI Behavior
	Kinds of IDs

	Controlling Program Execution
	Advancing Program Execution
	Action Points

	Debugging Programs
	Searching and Looking Up Program Elements
	Searching for Text
	Looking for Functions and Variables
	Finding the Source Code for Functions
	Resolving Ambiguous Names

	Finding the Source Code for Files
	Resetting the Stack Frame

	Viewing the Assembler Version of Your Code
	Editing Source Text
	Manipulating Processes and Threads
	Using the Toolbar to Select a Target
	Stopping Processes and Threads
	Updating Process Information
	Holding and Releasing Processes and Threads
	Examining Groups
	Displaying Groups
	Placing Processes into Groups
	Starting Processes and Threads
	Creating a Process Without Starting It
	Creating a Process by Single-Stepping
	Stepping and Setting Breakpoints

	Using Stepping Commands
	Stepping into Function Calls
	Stepping Over Function Calls

	Executing to a Selected Line
	Executing to the Completion of a Function

	Displaying Thread and Process Locations
	Continuing with a Specific Signal
	Deleting Programs
	Restarting Programs
	Checkpointing Programs and Processes
	Setting the Program Counter
	Interpreting Status and Control Registers

	Using Groups, Processes, and Threads
	Defining the GOI, POI, and TOI
	Setting a Breakpoint
	Stepping (Part I)
	Group Width
	Process Width
	Thread Width
	Using “Run To” and duntil Commands

	Using P/T Set Controls
	Setting Process and Thread Focus
	Process/Thread Sets
	Arenas
	Specifying Processes and Threads
	The Thread of Interest (TOI)
	Process and Thread Widths

	Specifier Examples

	Setting Group Focus
	Specifying Groups in P/T Sets
	Arena Specifier Combinations
	‘All’ Does Not Always Mean All
	Setting Groups
	Using the ‘g’ Specifier: An Extended Example
	Focus Merging
	Incomplete Arena Specifiers
	Lists with Inconsistent Widths

	Stepping (Part II): Some Examples
	Using P/T Set Operators
	Using the P/T Set Browser
	Using the Group Editor

	Examining and Changing Data
	Changing How Data Is Displayed
	Displaying STL Variables
	Changing Size and Precision

	Displaying Variables
	Displaying Program Variables
	Displaying Variables in the Current Block
	Browsing for Variables
	Displaying Local Variables and Registers
	Displaying Long Variable Names
	Automatic Dereferencing
	Displaying Areas of Memory
	Displaying Machine Instructions
	Closing Variable Windows

	Diving in Variable Windows
	Displaying Array of Structure Elements

	Scoping and Symbol Names
	Qualifying Symbol Names

	Changing the Values of Variables
	Changing the Data Type of Variables
	Displaying C Data Types
	Pointers to Arrays
	Arrays
	Typedefs
	Structures
	Unions
	Built-In Types
	Character Arrays (<string> Data Type)
	Areas of Memory (<void> Data Type)
	Instructions (<code> Data Type)

	Type Casting Examples
	Displaying the argv Array
	Displaying Declared Arrays
	Displaying Allocated Arrays

	Working with Opaque Data
	Changing the Address of Variables
	Changing Types to Display Machine Instructions
	Displaying C++ Types
	Classes
	Changing Class Types in C++

	Displaying Fortran Types
	Displaying Fortran Common Blocks
	Displaying Fortran Module Data
	Debugging Fortran 90 Modules
	Fortran 90 User-Defined Types
	Fortran 90 Deferred Shape Array Types
	Fortran 90 Pointer Types
	Displaying Fortran Parameters

	Displaying Thread Objects

	Examining Arrays
	Examining and Analyzing Arrays
	Displaying Array Slices
	Using Slices and Strides
	Using Slices in the Lookup Variable Command

	Array Data Filtering
	Filtering Array Data
	Filtering by Comparison
	Filtering for IEEE Values
	Filtering By a Range of Values
	Creating Array Filter Expressions
	Using Filter Comparisons

	Sorting Array Data
	Obtaining Array Statistics

	Displaying a Variable in All Processes or Threads
	Diving in a Laminated Pane
	Editing a Laminated Variable

	Visualizing Array Data
	Visualizing a Laminated Variable Window

	Setting Action Points
	Action Points Overview
	Setting Breakpoints and Barriers
	Setting Source-Level Breakpoints
	Choosing Source Lines

	Setting and Deleting Breakpoints at Locations
	Displaying and Controlling Action Points
	Disabling
	Deleting
	Enabling
	Suppressing

	Setting Machine-Level Breakpoints
	Setting Breakpoints for Multiple Processes
	Setting Breakpoints When Using fork()/execve()
	Processes That Call fork()
	Processes That Call execve()
	Example: Multiprocess Breakpoint

	Barrier Points
	Barrier Breakpoint States
	Setting a Barrier Breakpoint
	Creating a Satisfaction Set
	Hitting a Barrier Point
	Releasing Processes from Barrier Points
	Deleting a Barrier Point
	Changes When Setting and Disabling a Barrier Point

	Defining Evaluation Points and Conditional Breakpoints
	Setting Evaluation Points
	Creating Conditional Breakpoint Examples
	Patching Programs
	Conditionally Patching Out Code
	Patching in a Function Call
	Correcting Code

	Interpreted vs. Compiled Expressions
	Interpreted Expressions
	Compiled Expressions

	Allocating Patch Space for Compiled Expressions
	Dynamic Patch Space Allocation
	Static Patch Space Allocation

	Using Watchpoints
	Architectures
	Creating Watchpoints
	Displaying Watchpoints

	Watching Memory
	Triggering Watchpoints
	Using Multiple Watchpoints
	Data Copies

	Using Conditional Watchpoints

	Saving Action Points to a File
	Evaluating Expressions
	Writing Code Fragments
	TotalView Variables
	Built-In Statements
	C Constructs Supported
	Data Types and Declarations
	Statements

	Fortran Constructs Supported
	Data Types and Declarations
	Statements

	Writing Assembler Code

	Glossary
	Index

