Web Services
A Three Part Tutorial

Part |
Overview and XML

Why Study Web Services?

* Because we are really interested in Grid Services!

— The OGSI specification says that a grid service 1s
merely a web service that conforms to specific
interface and behavior conventions that define how
clients interact with that service.

— In OO-speak — a Grid Service “is-a” Web Service.

e There is much more $$$ wrapped up in Web
Services and therefore lots of tools, programmers,
experience, books, magazines, etc. - Great
leverage!

Three Part Tutorial

* Web services tend to be complicated — partly due
to the clever re-use of existing technologies, so

1

we'll tackle 1t 1n bite sized chunks

- Overview and XML
* What the paradigm is and the underpinning of everything

— Data Transfer

* Too many ways to simply move data. Why?

* Tomcat as one implementation
— Creating and finding web services

e Directories and such.

Language and O/S Warning

* Web Services are language neutral.

- Implementations of various components exist in Java,
C#, Perl, Python (Jython), C++, etc.

e However, my bias 1s toward Java and all
examples will be presented using Java

* There are ways to use .Net or EJB and Web
Services together — however, I have no interest in
Net and don't know enough about EJB so I can't
provide much useful information.

Web Services

e Definition 1

— A web service 1s any service that 1s available over the
internet, uses a standardized XML messaging system,
and 1s not tied to any one operating system or
programming language.

e Definition 2

— A web service 1s a piece of business logic, located
somewhere on the internet, that is accessible through

standard-based Internet protocols such as HTTP or
SMTP.

Best Definition I Found

* A web service 1s a software system

— 1dentified by a URI

— with public interfaces and bindings are defined and
described using XML

— whose definition can be discovered by other software
systems.

— and these other software systems may then interact
with the Web service in a manner prescribed by its
definition, using XML-based messages conveyed by
Internet Protocols.

Characteristics of Web Services
XML

e XML based — everything 1s XML, from the data
transferred, to the service description to the
“make” files used to create the programs that
implement the service.

— You will probably find that you use XML even
outside of the Web Services interface simply because
it 1s quite useful!

— These slides are created 1n StarOffice and the file they
are stored 1n 1s (of course) XML based.

Characteristics of Web Services
Loosely Coupled

e There 1s a service and a client.

— Location of the client and service may be variable
— The language they were written in 1s un-important
— The service need not exist when the client 1s written

— The service may change between invocations

* More manageable and simpler integration albeit
slower.

e Separate 1in your mind, the client and server. Use
different programmers. Use CRC types of design.

Characteristics of Web Services
Coarse Grained

* Web Services should do a lot because the
connectivity 1s fairly expensive
— Computing a sin of an angle 1s probably a bad idea.

— Asking the current load level of a computer 1s
probably a bad 1dea

— Asking for the optimal way to access a resource given
a complex environment 1s a better candidate.

e This 1s not Corba and 1t isn't RMI. You should see
services rather than atomic methods.

Characteristics of Web Services
Synchronous or Asynchronous

* This should be part of your design

— With the coarse grained and loosely coupled nature of
the system, some services may take a long time to
respond — one should not sit waiting for a response

* It really requires the designer to think bigger than
the immediate problem and 1n a fashion different
from “ordinary” programming.

* This is another good opportunity for multiple
person design sessions

Characteristics of Web Services
Support for Document Exchange

e Since

— XML 1s the mode of communication between clients
and servers

— XML can represent simple as well as complex data

— All major office automation systems will be in XML
within the next year

* Web Services provides a means of sharing large
documents without the need to know what is
inside of them.

Characteristics of Web Services
Self Describing

e If a system 1s loosely coupled, then there has to be
a way for a client to find a service.

— If we rely upon human documentation — we are lost

— There has to be a way to automate the extraction of
the essence of a service from the code that
implements it.

— There has to be an automated means of reading the
essence of a service and then take advantage of it.

Characteristics of Web Services
Discoverable

* Again — to support the loosely coupled nature of
web services, you cannot require that a program
knows where the service 1s nor the exact means
by which one invokes it!

* The use of the selt-describing nature of web
services with some simple directories
accomplishes this.

Characteristics of Web Services
Support for RPC

* You could have a web service architecture
without this. (e.g. mail, web pages, etc.) where the
user defines the handshaking and the protocol for
the client's use of the service

* Or, you can simply make a function call and be
done with it.

* Web services permits both and 1n fact this 1s the
typical way of accessing EJB or .Net

Summary

* Programming web services 1s not the same type of
programming you usually do
- Utmost degree of flexibility

— Listening to Client designers (and vice-versa)

* Understand that clients will change over time as will
SErvices

— Design using interfaces

— Design using Design Patters (more on this later!)

Some Terminology

e XML - a data format (think HTML)

* SOAP - a standard way to wrap up XML with an
envelope etc. (Think mail and attachments)

* WSDL (Web Services Description Language)

— Think about the best program library documentation
you ever saw — one that permitted you to use the
methods almost effortlessly.

* Universal Description, Discovery and Integration
(UDDI)

— Think of a dynamic name service on steroids.

A Simple Architecture Example

/Application)

1 Accesses Registry

2 Wraps in SOAP

3 Sends HTTP req.
4 Gets HTTP resp. |

UDDI /

Registry

HTTP request

HTTP response

Web Service
0 register

1 Process Soap

2 Perform Service
(may be complex!)
3 Send Response

WSDL

Real Example

e ARM data collection.

— Meta data 1s produced for all of the data —
commentary, equipment reports, etc.

— Meta data 1s filtered for duplicates, stored in the
database, and transmitted to interested parties

— Meta data 1s then attached to all data that 1s
transmitted and 1s used to form a “color map”

* Experience shows that databases change and
collection details change. Needs a clean break to
permit independent development.

A Real Example

/Data Assessment Pgm\. HTTP request | web Service

1 Accesses Registry "0 register

2 Wraps in SOAP 1 Process Soap

3 Sends HTTP req. 2 remove duplicates,
4 Gets HTTP resp. | 11 [eSPOMSE ert to data]%ase,
alert others.
3 Send Response

UDDI / WSDL

Registry

First Step — Why XML?

* The concept of “well formedness”™

- How many examples do you need of programs going

out of control due to a missing “,” (or something) in
its data file.

* The concept of “validity”

— There 1s the 1dea that every program is a compiler,
accepting as valid “sentences” properly structured
input and (oh if it were only so!) rejecting improperly
structured input. XML permits validity (syntax)
checks

* These two facts alone make XML worth while
independent of Web Services!

A Sample XML

<?xml version="1.0" encoding="UTF-8"?>

<!--
Document : DesignPatterns.xml
Created on : September 7, 2003, 12:52 PM
Author : Dave Stampf
Description:
Purpose of the document follows.
->

<book isbn="0-201-633511-2">
<title>Design Patterns</title>
<subtitle>Elements of Reusable Object-Oriented Software</subtitle>
<author>Eric Gamma</author>
<author>Richard Helm</author>
<author>Ralph Johnson</author>
<author>John Vlissides</author>
<publisher>Addison-Wesley Publishing Company</publisher>
<copyright>1995</copyright>
<hardcover />

</book>

Notes on the Simple XML

* It 1s wordy — the better to be read by humans and
the machines don't mind.

¢ Much more strict than html

- one “root” (otherwise, not well formed)
— case matters
— attributes must be quoted

— all open elements need to be closed

* No formatting information — just info info (see
XSLT!)

e Well-formedness

Minutia

1 66

* Youcan't use &, <, >, ',
- &
- <
- >
- etc.

— Or, use CDATA sections
* <I[CDATA[<anything your heart desires |]|>

But...

* How to 1nsist that a title be there?
* How to indicate that a subtitle 1s optional?

* How to indicate that the <hardcover> tag must be
empty”’

e How to indicate that there must be 1 or more
authors?

e How to indicate that the 1sbn number have the
right form?

Some Answers

e All but the last can be handled with a “DTD”

e Note — the format of the DTD was a blunder! It
should have been in XML..

e DTD is very limited — looks like a quick hack —
can't count, has trouble with namespaces.

* But, it 1s universally recognized while the more
robust versions are slowly gaining acceptance.

Simple XML with DTD

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book SYSTEM "Book.dtd">
<!--

Document : DesignPatterns.xml

Created on : September 7, 2003, 12:52 PM

Author : Dave Stampf

Description:

Purpose of the document follows.

-->

<book isbn="0-201-633511-2">
<title>Design Patterns</title>
<subtitle>Elements of Reusable Object-Oriented Software</subtitle>
<author>Eric Gamma</author>
<author>Richard Helm</author>
<author>Ralph Johnson</author>
<author>John Vlissides</author>
<publisher>Addison-Wesley Publishing Company</publisher>
<copyright>1995</copyright>
<hardcover />

</book>

The Associated DTD

<?xml version="1.0' encoding="UTF-8'?>

<!--
An example how to use this DTD from your XML document:

<?xml version="1.0"7>
<!DOCTYPE book SYSTEM "Book.dtd">
<book>

</book>
>

<!ELEMENT book (title, subtitle?, author+, publisher, copyright, hardcover?) >
<!ATTLIST book
isbn CDATA #IMPLIED

>
<!ELEMENT title (#PCDATA)>
<!ELEMENT subtitle (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>

<!ELEMENT copyright (f?CDATA)>

Tools

* What 1s so remarkable about having a “‘data
language” 1s that you can develop tools similar to
those that front end compilers to work with the
data.

* Netbeans 1s one of many

Name Collisions

* I'm probably the 1,000,000" person to think of
this book example, and many have probably used
tags like book, title, etc. before.

e Also, “title” 1s overloaded with html

* So, “namespaces’ are added (in a rather bizarre
fashion)

— Note — this 1s a young technology — support for
namespaces 1s NOT universal yet!!!

How to Work with XML

o If the XML format existed (like CSV) without
good libraries to verity, validate, input,
manipulate and output, it would be of little value.

— One benefit of XML i1s that 1t 1s accompanied by tons
of support programs and libraries that

* There are 2 standard models for interacting with
XML (and a number of nonstandard ones as well)

- Simple API for XML (SAX)
— Document Object Model (DOM)

Simple API for XML

* Scans the document, top to bottom and “calls-
back”™ a function for everything interesting

— start of document
— start of tag
— characters
- end of tag
- end of document

— efc.

* Only useful for infinitely long documents or other
special purposes.

How SAX Sees XML

<?xml version="1.0" encoding=""UTF-8"?>

<!--

Document : DesignPatterns.xml

Created on : September 7, 2003, 12:52 PM

Author : Dave Stampf

Description:

Purpose of the document follows.

-->
[startDocument]
[startElement]
<book isbn="'0-201-633511-2"">
[startElement]

<title>[characters]Design Patterns[endElement]</title>[end Element]
[startElement]

<subtitle>[characters]Elements of Reusable Object-Oriented Software[endElement|</subtitle>
[startElement]

<author>[characters]Eric Gamma|endElement]</author>
[startElement]

<author>[characters]Richard Helm[endElement]</author>

DOM

e DOM is based on the fact that an XML file can be
viewed as a “‘tree”.

* Most implementations of DOM use SAX to build
the tree (smart design!)

* When you use DOM to process and XML file,
you are returned a “Document” object and you are
free to walk the tree yourself.

The Tree as Seen by DOM

As an OOProgrammer...

* Every oval “i1s-a” Node
— Document Node “is-a”’ Node

- Element Node (e.g. author) “is-a”” Node
— Text Node “1s-a” Node

* Nodes have Nodelists (segences of Nodes)
beneath them.

e Nodes also have “values”

e Basically — everything you should have learned in
Data Structures 1!

Time for some Programs!

o | ets set some tasks

— Read 1n a Book xml file
— Validate it

— Extract the title, main author, publisher, and
copyright date

— output to standard output

Read and Validate

* There 1s no “magic” XML parser. Many
companies and students write their own and either
given them away or sell them. Some parsers come
with other components (Tomcat)

* In addition, the XML spec says nothing about
how one gets (instantiates) a parser

 Two major techniques

— Hardwired

— Factory generated — we'll work with this one

JAXP — the Acronyms Mount

* JAXP — Java API for XML Processing specifies
how to get a parser and how the parser behaves.

* [t provides a default parser

* If you have a better parser, you can still gain
access to it through the means that JAXP provides
and when a better one appears, swapping it in 1s a
configuration issue, not a compiler issue

* Very good use of “Interfaces”

Read and Validate (and explain!)

import java.io.*;

import javax.xml.parsers.*;
import org.xml.sax.InputSource;
import org.w3c.dom.*;

public class Book {

public Book(Reader r) throws Exception {
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setValidating(true);
DocumentBuilder db = dbf.newDocumentBuilder();
System.out.println(db.getClass());
InputSource is = new InputSource(r);

Document doc = db.parse(is);
process(doc);

}

private void process(Document doc) {
System.out.println("Have the document");

}

public static void main(String[] args) throws Exception{
Reader r = new FileReader("C:/WebServicesTutorial/DesignPatternsWithDTD.xml");
Book b = new Book(r);

1

Factory Pattern

* JAXP uses the Factory Pattern to produce a
parsers (document builder). This permits the parse
actual parser to be determined at run time.

— use the default

— run with the definition
javax.xml.parsers.DocumentBuilderFactory=org.apac
he.xerces.jaxp.DocumentBuilderFactoryImpl

— or having a configuration file...

* The DocumentBuilderFactory 1s a Factory that
produces “parsers’” or DocumentBuilders

e The returned parser understands input sources

Messy?

* While the code 1s messy, switching parses

— does not require any recompilation
— can be done by applications asynchronously

— can be done on the fly as well

* The factory pattern 1s used many times in the Java
library to handle varying databases and window
systems as well. (Its worth adding to your bag of
tricks.)

So — Extracting the Data...

private void process(Document doc) {
System.out.println("Have the document");
Node book = doc.getDocumentElement();

// find the title, first author, publisher and copyright date

String title=null, author = null, pub=null, copy=null;
NodeList nl = book.getChildNodes();
for (int 1 = 0; 1 < nl.getLength(); i++) {
Node n = nl.item(i);
String s = n.getNodeName();
if (s.equals("title")) {
title = n.getFirstChild().getNodeValue();
} else if (s.equals("author")) {
if (author == null) {
author = n.getFirstChild().getNodeValue();
} else if (! author.endsWith(", et al")) {
author +=", et al";
}
} else if (s.equals("publisher")) {
pub = n.getFirstChild().getNodeValue();
} else if (s.equals("copyright")) {
copy = n.getFirstChild().getNodeValue();
}

}
System.out.println(title + " by " + author + " published by " + pub + " in " + copy);

Method Patterns

* In the tree, everything 1s a Node

e Nodes understand:

- getNodeName — a String
- getNodeValue — a String
— getNodeChildren — a List of Nodes

— and other “editing” methods

* append, remove, replace

A More Typical Application...

* This was a bit too special purpose

— More typically, you only know that you will find
nodes, but you don't know the real type.

— It 1s easy to write a tree walking program. Everything
in the tree 1s a Node and all nodes have Children.

* This was also a bit “un-Java” like. If you are
buying into Java 100%, you should invest some

time with JDOM. If you are multi-lingual, you
should probably stick with DOM.

Modify an XML and Output

* Lets modify the XML by removing all but the
first author and adding “‘et al” if needed.

Shorten the XML

private void process(Document doc) throws Exception {
System.out.println("Have the document™);
Node book = doc.getDocumentElement();

int numAuthors = 0;

NodeList nl = book.getChildNodes();
for (int 1 0; 1 < nl.getLength(); i++) {
Node n = nl.item(i);
String s = n.getNodeName();
if (s.equals("author")) {
numAuthors++;
if (numAuthors == 1) continue;
else if (numAuthors == 2) {
n.getFirstChild().setNodeValue("et al");
} else {
book.removeChild(n);
}

}

// ok - output new XML - you've seen this pattern b4

TransformerFactory tf = TransformerFactory.newInstance();

Transformer t = tf.newTransformer();
t.transform(new DOMSource(doc), new StreamResult(System.out));

The Shortened XML

<?xml version="1.0" encoding="UTF-8"?>

<l--
Document : DesignPatterns.xml
Created on : September 7, 2003, 12:52 PM
Author : Dave Stampf
Description:

Purpose of the document follows.
--><book isbn="0-201-633511-2">
<title>Design Patterns</title>
<subtitle>Elements of Reusable Object-Oriented Software</subtitle>
<author>Eric Gamma</author>
<author>et al</author>

<publisher>Addison-Wesley Publishing Company</publisher>
<copyright>1995</copyright>
<hardcover/>

</book>

XML's Other Tricks

e XSLT — alanguage to transform XML documents
to something else (you saw the identity
transformation in the last example)

e XML Schemas — should provide a much better
syntax specification than DTD

* Database Connection — every major database
provides data transformations to and from XML

e But, all of these are outside the realm of “web
services’”

Next Time

e SOAP

e Tomcat

* A simple request/response

Homework

* Find the proper XML libraries for your favorite

language, get them installed and create a Hello
World XML file. (If Java, install the “jwsdp”)

* Write a program to “walk the tree” and pretty-
print out the tags. I'll show you mine next time

* Find any data format application you have now
and re-phrase it in terms of XML. Write a simple
output method and some useful access methods.

Then, stand back.

Annotated Bibliography

Design Patterns — Elements of Object Oriented Software by Gamma, Helm, Johnson &
Vlissides (Gang of 4). I don't know how you can make sense of OO software today without
this book.

Java Web Services by Chappell & Jewell — an O'Reilly Book. Useful in conjunction with
other books.

Web Services — Essentials by Cerami — an O'Reilly Book. As above — less of a Java spin, but
still, plenty of Java.

Java Web Services in a Nutshell by Topley — an O'Reilly Book. Very good reference work.
You need it.

Professional Java XML by Ahmed, et al. - a Wrox book. Very good collection of tutorials.
Highly recommended.

